

TABLE OF CONTENTS
TABLE OF CONTENTS 1

1. How to Use This Guide 8

Caution 8

Key Point or Important Concept 8

Helpful Hint 8

Reference Material 8

Computer Text 8

References and Hyperlinks 8

Definitions 8

2. Introduction - Welcome to the Payment Device SDK for Windows 9

Payment Device SDK Software 10

3. What You Will Need 11

Payment Gateway Account 11

Payment Device SDK 11

Sandbox/Operating Environment 12

4. Transaction Quick Start 13

Transaction Quick Start Procedure 13

Ready the SDK Components 13

Configure 13

Execute 14

Troubleshoot 14

5. Integration Quick Start 15

Transaction Diagram 15

6. Configure and Install 16

Ready the SDK Components 16

Configure The Server 16

1

Configure The Server Data Storage 18

Configure The Server for SSL 18

Configure The Server for use with a Web Proxy 18

Install and Run The Server 19

Run ChipDNA Server as a Console Application 19

Run ChipDNA Server as a Windows Service 19

Configure and Run The Sample Client Applications 20

The Client CLI 20

Configure The Server for Production Processing 21

Terminal Management System (TMS) 21

7. Messaging System 22

Standard Transaction Messaging 23

Auto-confirm Transaction Messaging 24

8. Payment Methods 25

Initialization 25

ConnectAndConfigure 25

Start Transaction 26

Confirm Transaction 28

Void Transaction 29

Continue Signature Verification 30

Linked Refund Transaction 31

Terminate Transaction 32

Set Idle Message 33

9. Payment Events 34

Connect and Configure 34

Configuration Update 34

Transaction Update 34

2

Card Notification 35

Card Details 35

Signature Verification Requested 36

Transaction Finished 37

10. Utility Methods 40

Request TMS Update 40

Get Status 40

Get Transaction Information 42

Get Version 43

Get Merchant Data 44

11. Utility Events 46

Payment Device Availability Change 46

Tms Update 46

Request Queue Run Completed 47

12. Glossary of Terms 48

13. Troubleshooting & Support 49

Appendix 1. PIN pad Device ID Examples 50

Appendix 2. Processing of Transactions 53

Step 1 - Authorization 53

Step 2 - Settlement 53

Step 3 - Funding 54

Appendix 3. Supported PIN pads and Software Versions 55

Appendix 4. Firewall Configuration 58

Appendix 6. Supported PIN pads and Supported Features 60

Appendix 7. Supported PIN pads and Transaction Update Event
Parameters 61

3

Document History
Document
Version

Software
Version

Date
yyyy-mm-dd

Summary of Changes

1.18 Release 3.02
(Houdini)

2021-06-01 Added Appendix 6 with a table
containing each supported PIN pad
and each corresponding supported
feature.

Added Appendix 7 with a table
containing each supported PIN pad
and each corresponding supported
Transaction Update Event
parameter value.

1.19 Release 3.03
(Oasis)

2021-08-02 Added support for the Ingenico
Lane/3000, iPP350, iSelf, iSelf LE
and iUC285 RAM devices for use in
the UK and Europe and the Miura
M020 device for use in the UK,
Europe and US.

Updated Table 5 - Added UK and
Europe to the region column for
Verifone Ux300 and UxFMTA
devices.

Updated Table 4 - EMV Contact
(Chip) and EMV Contactless (Chip)
are now Ready for the Ux300 and
UxFMTA devices.

4

1.20 Release 3.04
(Ultron)

2021-09-28 Updated Table 7 and Table 8 –
Miura M020 and M021 devices now
support PAN Key Entry. Ingenico
iSelf, iSelf LE and iUC285 RBA
devices now support
ApplicationSelectionStarte
d and
AmountConfirmationStarted
transaction update events and no
longer support Card Removal
Enforced. The iSelf and iSelf LE
also support the
PinEntryStarted event and the
new
MagstripeAccountSelectionS
tarted event. The Ingenico
Lane/3000, Lane/5000 and
Lane/7000 UPP devices now
support all transaction update
events.

Clarified that macOS is not
supported in Introduction - Welcome
to the Payment Device SDK for
Windows and Sandbox/Operating
Environment.

2.0 Release 3.05
(Lapis Lazuli)

2022-03-07 Updated document template.

SDK rebranded from ‘ChipDNA
SDK’ to Payment Device SDK.
Amendments made throughout the
document as appropriate.

Added values to the VOID_REASON
parameter in Void Transaction.

Updated Table 5 - Added 23k6
(23.52.6) for all Ingenico RBA
devices and 6.8.2.21 for all Verifone
VIPA devices.

Updated Table 8 -
MagstripeAccountSelectionS
tarted event is now supported
with the Miura M020, Verifone
Ux300 and Verifone UxFMTA
devices.

5

2.1 Release 3.06
(Nostromo)

2022-04-25 Added Run Request Queue method
and Request Queue Run
Completed event.

Clarified the Server’s data storage
requirements in Configure the
Server Data Storage.

2.2 Release 3.06
(Nostromo)

2022-06-17 Updated Table 5 - Added 7.82.05
for Lane 3000/5000/7000 UPP
devices.

2.3 Release 3.07
(Prime)

2022-08-10 Addition of battery status
information in
PAYMENT_DEVICE_STATUS
response to Get Status.

Error code returned by Transaction
Finished renamed from
WhitelistedCardPresented to
AllowlistedCardPresented.

Updated Table 5 - Added 2022 for
Lane 3000 RAM devices.

Updated Start Transaction
parameters to include
CREDENTIAL_ON_FILE_FIRST_
STORE and
CREDENTIAL_ON_FILE_REASON

2.4 Release 3.08
(Mastodon)

2022-09-26 Added support for the Ingenico
Self/4000 RAM device for use in the
UK and Europe.

2.5 Release 3.09
(Arcticus)

2022-11-07 Removed support for the following
devices:

● Ingenico iPP350 RAM
● Ingenico iSC250 RBA
● Ingenico iSelf RBA
● VeriFone Mx925 XPI
● VeriFone Mx915 XPI
● VeriFone Vx820 XPI

Added Appendix 5 detailing how to
enable Java client-side logging.

6

Added support for the Ingenico
Self/4000 and Self/5000 UPP
devices for use in the US.

2.6 Release 3.10
(Great Bear)

2023-01-23 Updated Table 5 - Added 2238 for
Self 4000 RAM devices.

Added support for the Ingenico
Self/2000 UPP device for use in the
US.

2.7 Release 3.11
(Lake Louise)

2023-03-13 Added support for the Ingenico
Self/2000 RAM device for use in the
UK and Europe.

Added Windows 11 as a supported
operating system in
Sandbox/Operating Environment

Updated Table 5 - Added MPI 1-65
for Miura devices.

2.8 Release 3.12
(Myrddin)

2023-06-22 Added support for the Ingenico
Self/7000 with Self/8000 RAM device
combination, for use in the UK and
Europe.

7

1. How to Use This Guide
Throughout this guide you will notice a number of visual indicators and styles used to
emphasize important information. These are explained below.

CAUTION

Critical information that must be obeyed to ensure success or avoid
significant problems.

KEY POINT OR IMPORTANT CONCEPT

Key information that you should check you understand fully before
continuing.

HELPFUL HINT

Hints and tips to help you act more effectively or avoid common
mistakes.

REFERENCE MATERIAL

References to further information outside this guide, such as international
standards and useful Internet addresses.

COMPUTER TEXT

Directories, filenames, commands, variables and the like are presented in-line like this:
C:\Payment Device SDK

…or in code blocks like this:

public ClientHelper(
String terminalID

)

REFERENCES AND HYPERLINKS

Cross-references to other parts of this guide are clickable hyperlinks presented like this:
How to Use This Guide

References to Internet locations (URLs) or clickable hyperlinks are presented like this:
www.google.com

DEFINITIONS

Acronyms and terms which may be unfamiliar to you are listed and defined in the Glossary
of Terms, so you can look them up at any time.

8

http://www.google.com/
http://www.google.com/

2. Introduction - Welcome to the Payment
Device SDK for Windows

What is the Payment Device SDK for? What are the benefits?

The SDK:

● Simplifies the use of EMV (EuroPay, MasterCard and Visa) chip cards in existing
point-of-sale (POS) applications.

● Provides a high level of transaction security, through integration with our payment
gateway and our end-to-end encryption technologies.

● Makes rapid deployment possible – it is easy to integrate, has been acquirer-tested
and is pre-certified for certain combinations of PIN pads and acquirers.

● Requires little maintenance to ensure ongoing compliance and stability – it regularly
obtains the latest configuration and PIN pad software updates automatically, via the
Terminal Management System (TMS).

In summary, the SDK makes it as easy as possible for you to handle EMV transactions in
your payment solution. For more background relating to the payment process see Appendix
2. Processing of Transactions.

What is the Payment Device SDK?

The SDK is a package of software and services from the payment gateway including:

● A software development kit (SDK) for Windows and Linux-based devices. macOS is
not supported.

● Configuration and PIN pad software and updates, through integration with our TMS.
● Flexible integration choices for different operating environments through integration

with a range of PIN pads

What is the purpose of this guide?

This guide provides instructions to help you use the SDK to quickly and easily integrate
EMV into your payment solution.

If you are unfamiliar with any of the acronyms or terms used in this guide, please see the
Glossary of Terms.

9

Payment Device SDK Software
The SDK consists of two core components; the Server and the Client:

● The Server is the application that controls a PIN pad and communicates with the
payment gateway.

● The Client is the application that makes requests for payment to the Server. It also
receives feedback from the Server which may be routed as required and translated
into messages for the user or operator.

10

3. What You Will Need
Payment Gateway Account
Register for a gateway account with your partner:

1) Once logged in, click on Settings – Security Keys and follow the on-screen
instructions.

2) Your API Key will need to have ‘API’ source permissions only.

Keep the API Key details safe - you need them to configure the
solution for processing transactions.

Payment Device SDK
The SDK is packaged and supplied as a .zip archive. The contents are described in Table 1.

Table 1 – Contents of the SDK .zip archive

Folder Name Description

ChipDNA API
Documentation

The documentation for the Client Helper API
(ChipDNA Framework .CHM reference files).

ChipDNA Client CLI An example Client that sends payment requests to
Server (Command Line).

ChipDNA Client CLI
Source

The source code for an example Client that uses
Server.

ChipDNA Client GUI An example Client that sends payment requests to
Server (Graphical).

ChipDNA Server The application that controls the PIN pads and
communicates with the payment gateway.

To view the content of any downloaded .CHM file you must first unblock
it. Right-click on the file, click Properties➔ Unblock➔ OK. Then
double-click the file to open and view as normal.

The Payment Device SDK was previously named ‘ChipDNA SDK’

11

Sandbox/Operating Environment
Operating System:

● The Server will run on any device that supports the full version of Microsoft .NET
Framework 4.7.2. All deployments should be using an operating system that is
currently in vendor support, such as:

○ Windows 8.1
○ Windows 10
○ Windows 11

○ Windows Server 2012
○ Windows Server 2012 R2

● macOS is not supported.

Other software:

● A text editor, such as Windows Notepad or Notepad++.

Hardware:

● PIN pad: See Appendix 4 for which PIN pads are supported by the Server.
● Chip card for test transactions.

If you do not already have a dedicated chip card for testing purposes you
may use your own personal chip card - your details are safe in our PCI
DSS Level 1 compliant environment and the sandbox environment
cannot make real charges to your card.

12

4. Transaction Quick Start
This section explains how to quickly get the Server application communicating with an
example Client so that transactions can be processed in a sandbox environment.

The Quick Start examples assume use of the following:

● PIN pad:
○ Type: Ingenico iPP320 RBA
○ Connection: USB (VCOM serial)

● Server/Client communication:
○ Protocol: TCP/IP
○ Port: 1869

For different options to suit your installation see Configure and Install.

Firewall changes may be required so the Server can communicate with
several internet services. Please see Appendix 4. Firewall Configuration
for more details.

Transaction Quick Start Procedure
READY THE SDK COMPONENTS

These steps are required only once for each installation that you wish to run.

1. If you haven’t already done so, create your API Key as described in Payment
Gateway Account.

2. Install the SDK by extracting the .zip archive to C:\Payment Device SDK.

You may use a different installation directory, but remember to substitute
throughout the examples.

CONFIGURE

These steps are required only once for each installation that you wish to run.

1) Browse to C:\Payment Device SDK\ChipDNA Server.
2) Using your text editor, edit chipdna.config.xml at the following elements:

a) ApplicationIdentifier=“********”: Replace asterisks (*) with the
Application Identifier or App Name.

b) Id=“********” in PaymentDevice: Replace asterisks with the ten-digit
number that you will find on the screen of the PIN pad (after the “S/N:” prefix).
For an example, see Appendix 1. PIN pad Device ID Examples.

3) Check which RS-232 port the PIN pad is connected to. If it is not COM1 then at the
element Port in PaymentDevice replace COM1 with the correct value.

4) Save the file and close the text editor.

13

EXECUTE

These steps are required each time you wish to run the Server and a sample Client.

1) Browse to C:\Payment Device SDK\ChipDNA Server.
2) Execute ChipDNAServer.exe.

When the Server runs it takes time to start up before it’s ready to be
used by a Client application. If run for the first time it must perform a
TMS configuration update and each time its run it must connect to and
initialize any configured PIN pads.

3) Using your text editor, edit client.config.xml and change the Terminal ID to the
value obtained during registration. If the Server is listening on a port or protocol
different to the default, then change the value as required.

4) Compile your preferred sample Client and then execute ensuring the configuration file
client.config.xml is in the same directory.

5) The Client will present a list of the available commands. Input P for “Start
Transaction” and then enter:

a) The amount in the minor value (for example: 123 for 1.23). The currency is
defined by the terminal configuration on our payment gateway.

b) The type of transaction or accept the default sale to process an Authorization
transaction.

c) A unique reference (gateway Order ID) for the transaction or accept the
auto-generated value.

6) At the PIN pad, you must now simulate the cardholder:

Take care when entering your PIN – if you enter it incorrectly 3 times
your chip card may become locked just as it would in a real transaction
attempt.

a) Insert a chip card as prompted at the PIN pad. The test transaction will start.
b) Follow the prompts on the PIN pad until the test transaction is complete.

7) Check the sample Client console output to see the final status (either “Approved” or
“Declined”) along with the receipt details.

8) View the transaction details in your gateway reporting by logging in with your
username and password.

TROUBLESHOOT

If you experience any difficulties we’re here to help – please see Troubleshooting & Support

14

5. Integration Quick Start
In this section, we use a typical example to help you understand how to approach
integration of the SDK into your payment solution. The majority of payments will be
processed in the same way, as shown in the following Transaction Diagram.

Transaction Diagram
Figure 1 shows the flow of a typical EMV transaction from your perspective as the integrator.
For simplicity, the diagram assumes that the PIN is correct and no further authentication is
required. There are of course other ways in which a transaction may be processed - these
are detailed with suitable diagrams in the Messaging System section.

Figure 1 - Flow diagram for a typical EMV transaction.

15

6. Configure and Install
The Transaction Quick Start section uses a controlled example to demonstrate the simplicity
of using the SDK. This section provides detailed information to help you get the SDK
working in alternative environments and configurations.

Ready the SDK Components
If you have not already done so, register for a sandbox account and extract the SDK .zip
archive as described in the Ready the SDK Components section.

Remember to substitute your installation directory in all examples if you
are not using C:\Payment Device SDK.

Configure The Server
Before you can use the Server application you must modify the configuration XML file to suit
your specific environment.

1) Browse to C:\Payment Device SDK\ChipDNA Server where you will find a
sample configuration file (chipdna.config.xml) that you can adapt. Or for a
completely fresh start, overwrite this with a copy of the blank template file also
provided (chipdna.config.xml.template).

2) Using your text editor, edit chipdna.config.xml and change the values detailed in
Table 2 to match your environment. The path of the element is given using the XPath
syntax.

3) When you have finished editing, save the file and close the text editor.

Table 2 – Server configuration options.

Path Element Value

/ChipDnaServer ApplicationIde
ntifier

This must be a single word or acronym in UPPERCASE
that uniquely identifies the integrating application. It should
contain only the characters A-Z 0-9 and – and has a
maximum length of 25. This value is used by the TMS
platform to configure TMS properties specifically for an
integrating application.

/ChipDnaServer MachineName This is a name used to identify the Server. This must pass
the same validation as a DNS name and although the
hostname of the machine can be used it does not have to
be. The default for this value is localhost.

/ChipDnaServer/Terminals
/Terminal/PaymentDevices
/PaymentDevice

Id Each PIN pad connected to the Server has a unique Device
ID - generally an ID or serial number shown on the start-up
screen or printed on the rear (for examples see Appendix 1.
PIN pad Device ID Examples).

16

Path Element Value

/ChipDnaServer/Terminals
/Terminal/PaymentDevices
/PaymentDevice

DeviceActive If you need to temporarily disable the configuration section
for a device use one of the following to enable or disable a
PIN pad for use with the Server:
true = Enable.
false = Disable.

/ChipDnaServer/Terminals
/Terminal/PaymentDevices
/PaymentDevice

Model Use one of the following as appropriate to your hardware
and region:
Ingenico-iPP320-RBA
Ingenico-iPP350-RBA
Ingenico-iSelf-RAM
Ingenico-iSelfLE-RBA
Ingenico-iUC285-RAM
Ingenico-iUC285-RBA
Ingenico-Lane-3000-RAM
Ingenico-Lane-3000-UPP
Ingenico-Lane-5000-UPP
Ingenico-Lane-7000-UPP
Ingenico-Self-2000-RAM
Ingenico-Self-2000-UPP
Ingenico-Self-4000-RAM
Ingenico-Self-4000-UPP
Ingenico-Self-5000-UPP
Ingenico-Self-7000-8000-RAM
Miura-M020-MPI
Miura-M021-MPI
VeriFone-Ux300-VIPA
VeriFone-UxFMTA-VIPA

/ChipDnaServer/Terminals
/Terminal/PaymentDevices
/PaymentDevice

Protocol SERIAL

/ChipDnaServer/Terminals
/Terminal/PaymentDevices
/PaymentDevice

Port This value must match the appropriate COM port, such as
COM1. (See Configure for more on this).

/ChipDnaServer/Terminals
/Terminal/PaymentDevices
/PaymentDevice

Baudrate This must match the baud rate defined in the configuration
of the PIN pad. Please consult your PIN pad documentation
for more information.

/ChipDnaServer/Terminals
/Terminal/PaymentDevices
/PaymentDevice

Standby
Message

Enter a message to be displayed on the PIN pad when it is
in standby/idle mode. The number of characters that can
be displayed is device specific. [EOL] should be used to
indicate line breaks in the display message.

/ChipDnaServer Socket Enter the IP address and port number (between 1024 and
65535) that ChipDNA Server is hosted on for
communication. The two values should be concatenated
using a colon. The default value is 127.0.0.1:1869.

17

CONFIGURE THE SERVER DATA STORAGE

The Server requires data storage for TMS configuration and transaction data. By default the
Server will store data in AppData. The Server must have read/write access to AppData and
AppData must persist.

The chipdna.config.xml file has an optional FileStore element which can be used to
change the data storage location. The path to the storage location must be absolute. For
example, to specify the path C:\ProgramData\ the XML configuration file will contain the
following:

<FileStore>
<Location>C:\ProgramData\</Location>

</FileStore>

This additional configuration element should only be used if the integration requires a
location different to the default.

The Server will not allow TMS updates or any payment methods to
be performed if the disk space is below 10MB.

An alternative storage location must be used if the Server cannot
access AppData or if AppData is frequently wiped as is the case
when UWF is enabled.

CONFIGURE THE SERVER FOR SSL

The Server can be configured to use SSL to communicate with the Client(s). An additional
element CertificateHash must be added in chipdna.config.xml and used to specify
the Certificate Hash. For example:

<ChipDnaServer>
<Socket>127.0.0.1:1869</Socket>
<CertificateHash>

72086bb5184ea4a4eef39b20e52566d87e44da6d
</CertificateHash>

</ChipDnaServer>

The C++ client is dependent on OpenSSL. It is the integrator’s
responsibility to link and maintain the OpenSSL library and to
ensure it is using the latest version. For Windows download the
library from the OpenSSL website

CONFIGURE THE SERVER FOR USE WITH A WEB PROXY

The Server can be configured to use a web proxy to communicate with the payment
gateway and TMS. An additional element WebProxy must be added in
chipdna.config.xml and used to specify the IP address or hostname and port of the
web proxy. If the web proxy requires authentication the username and password should also
be specified in the WebProxy element. For example:

18

https://docs.microsoft.com/en-us/windows-hardware/customize/enterprise/unified-write-filter

<ChipDnaServer>
<WebProxy>

<Connection>proxy.url.tld:3128</Connection>
<Username>username</Username>
<Password>password</Password>

</WebProxy>
</ChipDnaServer>

Install and Run The Server
The Server can be executed as either a console application or installed as a Windows
Service. Running it as a console application is useful during integration and debugging,
however we would recommend installation as a Windows Service as it allows for automatic
startup as a user that is not logged in. The following sections detail how to install and use
the Server in either mode.

RUN CHIPDNA SERVER AS A CONSOLE APPLICATION

The following instructions detail how to run the Server as a console application. They
assume that the Server has been configured as described in the Configure The Server
section.

1) Browse to C:\Payment Device SDK\ChipDNA Server.
2) Execute ChipDNAServer.exe.

RUN CHIPDNA SERVER AS A WINDOWS SERVICE

The following instructions detail how to run the Server as a Windows Service. They assume
that the Server has been configured as described in the Configure The Server section and
the user has administrative privileges.

1) Browse to C:\Payment Device SDK\ChipDNA Server.
2) Using your text editor, edit service.install.bat and make sure that binpath

shows the correct full path for ChipDNAServer.exe (in our examples this is
C:\Payment Device SDK\ChipDNA Server\ChipDNAServer.exe).

3) Execute service.install.bat.

If for any reason the installation fails, use the command prompt to run the
following command which will uninstall any previous Server Service
installations: sc delete CreditcallChipDNAServer. Then try
installing again.

4) By default, the CreditcallChipDNAServer service is installed to run under the
‘Local System’ account and to be started manually.

If you need the service to start automatically when the machine reboots,
open the management console for Windows services and change the
properties of the ChipDNA Server Service from Manual to
Automatic.

The management console for Windows services can be found at Control
Panel➔ Administrative Tools➔ Services.

19

5) If the ChipDNA Server Service is not running, open the management console for
Windows services, select the ChipDNA Server Service and click ‘Start’. Or, at
the command prompt run the following command: net start
CreditcallChipDNAServer.

Configure and Run The Sample Client Applications
A sample command line interface Client is provided. The following items detail how to
configure and execute those applications.

THE CLIENT CLI

To configure and run the sample Client CLI:

1) Make sure that the Server is configured and running as detailed in Install and Run
The Server.

2) Browse to C:\Payment Device SDK\ChipDNA Client CLI.
3) Using your text editor, edit client.config.xml and change the Terminal ID to the

value obtained during registration. If the Server is listening on a port or protocol
different to the default, then change the value as required.

4) Run the Client CLI using ChipDNAClient.exe.
5) The Client CLI will present a list of the available commands. Input P for “Start

Transaction” and then enter:
a) The amount in the minor value (for example: 123 for 1.23). The currency is

defined by the terminal configuration on our payment gateway.
b) The type of transaction or accept the default sale to process a Sale

transaction.
c) A unique reference (gateway Order ID) for the transaction or accept the

auto-generated value.
6) At the PIN pad, you must now simulate the cardholder:

Take care when entering your PIN – if you enter it incorrectly 3 times
your chip card may become locked just as it would in a real transaction
attempt.

a) Insert a chip card as prompted at the PIN pad. The test transaction will start.
b) Follow the prompts on the PIN pad until the test transaction is complete.

7) Check the Client CLI to see the final status (either “Approved” or “Declined”).

20

Configure The Server for Production Processing
By default, the Server is configured to use the sandbox environment. This section details the
configuration changes required for production processing. When a merchant is boarded on
the payment gateway production platform they will need to generate an API Key under
Settings – Security Keys. These values should be specified in the XML configuration file.

The XML configuration file also includes details for the TMS platform which must be edited
to use the gateway’s production platform. It should be modified to contain the following:

<Tms>
<Servers>

<Server use="tms">
<Url>https://tms.cardeasexml.com</Url>
<Timeout>45000</Timeout>

</Server>
<Server use="registration">

<Url>https://live.cardeasexml.com/gw.cex</Url>
<Timeout>45000</Timeout>

</Server>
</Servers>

</Tms>

Firewall changes may be required so the Server can communicate with several internet
services. Again, these must be changed to use the production platform instead of the
sandbox environment. Please see Appendix 5. Firewall Configuration for more details.

Terminal Management System (TMS)
The Server regularly contacts TMS in order to download additional configuration data,
including EMV transaction settings, such as: TDOL, DDOL, Floor Limits, and Certificate
Authority Public Keys. The TMS also provides application configuration data, such as
timeouts and external connectivity options. The TMS can also provide firmware upgrades for
PIN pads as required by certification, processors and schemes.

The Server automatically connects to the Terminal Management System at regular time
intervals, for example every 24 hours (this process does not affect processing transactions).
If after a TMS update a configuration update of the PIN pads is required the Server must
interrupt processing transactions to allow the PIN pad update to happen. This will only
happen during a specified time slot which is also configurable in TMS. The default value for
this is 3am.

The Server stores the configuration data downloaded from TMS on the local disk.

21

7. Messaging System
The following sections discuss the messaging between the Client Helper and the POS
application. In a transaction, the POS software initiates a transaction with the Client Helper
and it updates the POS software on the progress of the transaction:

● Standard transaction – In a standard Chip transaction, the POS software initiates a
transaction with the Client Helper and it updates the POS software on the progress of
the transaction.

● Auto-confirm transaction – In an auto-confirm transaction, the POS software
initiates a transaction with the Client Helper and it updates the POS software on the
progress of the transaction. The installation will Confirm or Void the transaction and, if
required, request signature verification before sending the TransactionFinished event.
Errors can occur which require the POS to Confirm or Void

After calling the StartTransaction() method, the Client application may listen for the
following events:

● TransactionUpdate – Fired throughout the transaction to update the POS
software on the progress of the transaction.

● CardNotification – Fired when there is a change in the card status such as card
provided or removed.

● CardDetails – Fired when card details are available.
● SignatureVerificationRequested – Fired when signature verification is

required during an auto-confirm transaction.
● TransactionFinished – Fired when the transaction is completed on the PIN pad.

The installation does not perform signature verification during a transaction. If the card
verification method of signature is required for an approved transaction then this is indicated
in the TransactionFinished event. It is then up to the POS software to verify the
cardholder’s signature. If the signature is verified the transaction should be confirmed but if
signature verification fails then the transaction should be voided.

The Client application may also listen for the PaymentDeviceAvailabilityChange
event which is fired when a PIN pad is connected or disconnected. The Client application
may receive this event at any time, not only when a transaction is in progress.

The following sections describe the messaging process for each of these flows in greater
detail.

For complete details on all of the methods and properties of the Client Helper, see reference
file C:\Payment Device SDK\ChipDNA API Documentation\ChipDNA
Framework.chm.

22

Standard Transaction Messaging

Figure 2 - Standard transaction messaging process.

The standard transaction messaging process follows these steps:

1) The Client application calls StartTransaction() (see Start Transaction) with the
amount of the transaction and a unique reference which identifies the transaction to
the Client application. It should also specify the type of transaction; Sale
(Authorization) or Refund.

2) As the customer progresses through the transaction, the Client Helper sends
TransactionUpdate events (see Transaction Update) describing the progress of
the transaction, including EMV commands and data communication.

3) CardNotification and CardDetails events will be fired during a transaction
when the data they provide is available.

4) When the customer has completed the transaction, the Client Helper sends the
TransactionFinished event (see Transaction Finished).

a) If the transaction was successful, the TransactionFinished event contains
the transaction information required to print a receipt and, if approved, whether
signature verification is required.

b) If the transaction was not successful, the TransactionFinished event
contains error information.

5) In order to be funded for an approved transaction, the Client application calls the
ConfirmTransaction() method (see Confirm Transaction). If signature
verification or goods issue fails for an approved transaction then the Client application
calls the VoidTransaction() method (see Void Transaction). Declined or
terminated transactions do not require the Client to call ConfirmTransaction() or
VoidTransaction(). If a transaction was approved online but the final transaction
result is declined or terminated then the Server will handle the void automatically
before returning the result to the Client.

After authorization you must CONFIRM - otherwise the transaction
will not be settled and the merchant will not receive funds.

The Server may decline a transaction after an authorization and
attempt to send a reversal automatically. If this fails for any
reason, a VoidRequestFailed error is sent in the

23

TransactionFinished event. The integration must VOID this
transaction.

Auto-confirm Transaction Messaging

Figure 3 - Auto-confirm transaction messaging process.

The auto-confirm transaction messaging process follows these steps:

1) The Client application calls StartTransaction() (see Start Transaction) with the
amount of the transaction, a unique reference which identifies the transaction to the
Client application and auto-confirm set to true. It should also specify the type of
transaction; Sale (Authorization) or Refund.

2) As the customer progresses through the transaction, the Client Helper sends
TransactionUpdate events (see Transaction Update) describing the progress of
the transaction, including EMV commands and data communication.

3) CardNotification and CardDetails events will be fired during a transaction
when the data they provide is available.

4) SignatureVerificationRequested event may be fired during the transaction,
before the TransactionFinished event (see Signature Verification Requested)

5) When the customer has completed the transaction, the Client Helper sends the
TransactionFinished event (see Transaction Finished).

a) If the transaction was successful, the TransactionFinished event contains
the transaction information required to print a receipt and, if approved, whether
signature verification is required.

b) If the transaction was not successful, the TransactionFinished event
contains error information.

If the Server fails to confirm a transaction for any reason, a
ConfirmRequestFailed error is sent in the
TransactionFinished event. The integration must CONFIRM
this transaction otherwise the transaction will not be settled and
the merchant will not receive funds. This transaction can be
VOIDED if required.

If the Server fails to void a transaction for any reason, a
VoidRequestFailed error is sent in the TransactionFinished
event. The integration must VOID this transaction.

24

8. Payment Methods
Initialization
Your application interacts with the Server using a ClientHelper object instance. If multiple
Client applications are running on a POS Server, each Client application must initialize its
own instance of ClientHelper. Before beginning the messaging process, you must
initialize a new ClientHelper instance using the ClientHelper constructor.

public ClientHelper(
string serverAddress, int serverPort, string serverSslHostName,

string apiKey
)

This method takes the following parameters:

Parameter Description/Value

apiKey The API Key value you created after logging into your
gateway account under Settings – Security Keys.

serverAddress String. The IP address or hostname of the Server.

serverPort Integer. The port number of the Server.

This method returns a ClientHelper object instance that you will use to interact with the
Server.

ConnectAndConfigure
Call ConnectAndConfigure() to connect to the PINpad and configure the Server to be
ready for transactions.

public Response ConnectAndConfigure (
List<Parameters> parameters

)

ConnectAndConfigure() does not take any parameters. If Response does not contain
errors, the Server will send updates via the ConnectAndConfigure event and will fire a
ConfigurationUpdate event once the process is complete.

ConnectAndConfigure() returns a Response object instance containing a parameter list
with the following name-value pairs:

Parameter Description/Value Presence

ERRORS Error codes in comma separated values format. On error

25

Start Transaction
Call StartTransaction to initiate a transaction using the Server:

public Response StartTransaction(
List<Parameters> parameters

)

This can be used to start a sale, refund or account verification transaction.

StartTransaction() takes the following parameter name-value pairs:

Name Description/Value Presence

AMOUNT String. Value of the transaction in the
minor units of the currency used (e.g.,
pence or cents). For example, submit
123 for 1.23. The currency is defined
by the terminal configuration on our
payment gateway.

For Sale and
Refund
transactions
only

AMOUNT_TYPE Actual or Estimate. An amount
specified as Actual will not be
expected to change between Auth and
Confirm (Capture).

Always

REFERENCE Printable ASCII characters excluding
the following characters “<>|:*?/\.
Maximum length of 50 characters and
may not contain leading or trailing
spaces. This is used as a transaction
identifier for the Client application and
must be a value unique to the
transaction. It is also stored as an
‘Order ID’ in the payment gateway
reporting system.

Always

BATCH_REFERENCE Printable ASCII characters with a
maximum length of 50 characters and
may not contain leading or trailing
spaces. This can be used to group
transactions together.

As needed

TRANSACTION_TYPE Sale or Refund.
A Sale transaction functions like an
‘Authorization’ in the gateway system.
It must be confirmed (captured) to
settle.

Always

PAN_KEY_ENTRY Requests a PAN key entry transaction
is started. The card details are keyed
into the PIN pad and should only be
used for a Card Not Present
transaction. This value should be set
to True or False.

As needed

26

Name Description/Value Presence

CARDHOLDER_ADDRESS Unicode characters excluding ASCII
control characters. Maximum length of
330 characters and may not contain
leading or trailing spaces. This is used
to provide the cardholder address for
PAN key entry transactions.

As needed for
PAN key entry
transactions
only

CARDHOLDER_ZIPCODE Unicode characters excluding ASCII
control characters. Maximum length of
16 characters and may not contain
leading or trailing spaces. This is used
to provide the cardholder’s ZIP code
for PAN key entry transactions.

As needed for
PAN key entry
transactions
only

TIPPING_SUPPORT Default, None, OnDevice,
EndOfDay or Both may be used to
enable or disable the tipping method
for a sale transaction. If not present or
Default the configuration from TMS will
be used. OnDevice, EndOfDay or
Both may only be used if these
tipping methods are enabled in TMS.

As needed for
Sale
transactions
only
(excluding
PAN key
entry)

CUSTOMER_VAULT_COMMAND add-customer As needed.

CUSTOMER_VAULT_ID Up to 36 character string, ex:
12345ABCDE

As needed for
Customer
Vault
Commands
only

MERCHANT_DEFINED_FIELD_01
MERCHANT_DEFINED_FIELD_02
...
MERCHANT_DEFINED_FIELD_19
MERCHANT_DEFINED_FIELD_20

Up to 255 characters As needed

BILLING_ADDRESS_1
BILLING_ADDRESS_2
BILLING_CITY
BILLING_STATE
BILLING_POSTAL_CODE
BILLING_ZIP_CODE
BILLING_COUNTRY
BILLING_EMAIL_ADDRESS
BILLING_PHONE_NUMBER

Up to 255 characters As needed

PO_NUMBER Printable ASCII characters excluding
the following characters “<>|:*?/\.
Maximum length of 50 characters and
may not contain leading or trailing
spaces

As needed

TAX_AMOUNT See AMOUNT As needed

AUTO_CONFIRM True or False.. As needed

27

Name Description/Value Presence

CREDENTIAL_ON_FILE_FIRST_S
TORE

True or False. As needed for
Sale
transactions
only

CREDENTIAL_ON_FILE_REASON Unscheduled, Installment,
Incremental, Resubmission,
DelayedCharge, ReAuth or
NoShow should be used to indicate
the reason for a credential on file first
store transaction

As needed for
Sale
transactions
when
CREDENTIAL
_ON_FILE_F
IRST_STORE
is True

As mentioned previously the REFERENCE parameter is used as a
transaction identifier for the Client application. It is used locally by the
Server to find the transaction when performing a confirm, void or linked
refund operation. It is also used in gateway reporting as the unique
Platform ID value which can be used to look up the transactions.
Therefore, the value supplied must be unique to each transaction.

StartTransaction() returns a Response object instance containing a parameter list
with the following name-value pairs:

Name Description/Value Presence

ERRORS Error codes in comma separated values format. On error

Confirm Transaction
To finalize a transaction after it has been approved so that the transaction will be settled,
you must call ConfirmTransaction(). If the data in the TransactionFinished event
indicated that a signature was required, calling ConfirmTransaction() is also a
confirmation that the signature passed verification.

You do not have to call ConfirmTransaction() immediately after the transaction has
been approved. For example, you may want to authorize multiple cards for a single
purchase, in which case you would call ConfirmTransaction() for each approval after
all transactions have been authorized.

public Response ConfirmTransaction(
List<Parameters> parameters

)

ConfirmTransaction() takes the following parameter name-value pairs:

28

Name Description/Value Presence

REFERENCE The reference of the transaction to confirm.
Printable ASCII characters excluding the following
characters “<>|:*?/\. Maximum length of 50
characters and may not contain leading or trailing
spaces. This should be the reference provided by
the TransactionFinished event.

Always

AMOUNT String value of the amount in the minor units of the
currency used (e.g., pence or cents) if different
from authorized amount. For example, submit 123
for 1.23. The currency is defined by the terminal
configuration on our payment gateway.

As needed

ConfirmTransaction() returns a Response object instance containing a parameter list
with the following name-value pairs:

Name Description/Value Presence

TRANSACTION_RESULT Either Approved or Declined Always

ERRORS Error codes in comma separated
values format.

On Declined

RECEIPT_DATA Elements required for receipting in XML
format.

On Approved

If the transaction result is declined, it is the responsibility of the integrating application to
retry until it is approved.

Void Transaction
To void a transaction before settlement, but after it has been approved or confirmed so that
funding does not take place, call VoidTransaction(). If the data in the
TransactionFinished event indicates that signature was required, and the signature
verification fails then VoidTransaction() must be called.

public Response VoidTransaction(
List<Parameters> parameters

)

VoidTransaction() takes the following parameter name-value pairs:

Name Description/Value Presence

REFERENCE The reference of the transaction to void.
Printable ASCII characters excluding the
following characters “<>|:*?/\. Maximum
length of 50 characters and may not contain
leading or trailing spaces. This should be the
reference provided by the
TransactionFinished event.

Always

29

Name Description/Value Presence

VOID_REASON Value must be one of predefined Void Reasons.
Currently supported values:
SignatureDeclined
TransactionFailure
PrintFailure
FulfillmentFailure
StorageFailure

As needed

VoidTransaction() returns a Response object instance containing a parameter list with
the following name-value pairs:

Name Description/Value Presence

TRANSACTION_RESULT Either Approved or Declined Always

ERRORS Error codes in comma separated
values format.

On Declined

RECEIPT_DATA Elements required for receipting in
XML format.

On Approved

If the transaction result is declined, it is the responsibility of the integrating application to
retry until it is approved.

Continue Signature Verification
ContinueSignatureVerification() must be sent after a
SignatureVerificationRequested event in order to verify the signature and finish the
transaction. The Server will finalize the transaction and send the transactionFinished
event after receiving this command. This command and its associated event are only used
during auto-confirm transactions.

public Response ContinueSignatureVerification(
List<Parameters> parameters

)

ContinueSignatureVerification() takes the following parameter name-value pairs:

Name Description/Value Presence

SIGNATURE_VERIFICATION_
RESULT

True or False Always

ContinueSignatureVerification() returns a Response object instance containing a
parameter list with the following name-value pairs:

Name Description/Value Presence

ERRORS Error codes in comma separated values format. On error

30

Linked Refund Transaction
The Client can call LinkedRefundTransaction() to refund all or part of a previously
approved and confirmed transaction.

public Response LinkedRefundTransaction(
List<Parameters> parameters

)

LinkedRefundTransaction() takes the following parameter name-value pairs:

Name Description/Value Presence

AMOUNT String value of the transaction in the minor
units of the currency used (e.g., pence or
cents). For example, submit 123 for 1.23.
The currency is defined by the terminal
configuration on our payment gateway.

Always

REFERENCE Printable ASCII characters excluding the
following characters “<>|:*?/\. Maximum
length of 50 characters and may not contain
leading or trailing spaces. This is used as a
transaction identifier for the Client application
and must be a value unique to the
transaction.

Always

SALE_REFERENCE The reference of the transaction to refund.
Printable ASCII characters excluding the
following characters “<>|:*?/\. Maximum
length of 50 characters and may not contain
leading or trailing spaces. This should be the
reference provided by the
TransactionFinished event.

Always

SALE_DATE_TIME The date and time of the original transaction.
This is in the format yyyyMMddHHmmss but
only matches what is specified for example
yyyyMMdd, yyyyMMddHH etc. A minimum of
the date yyyyMMdd must be specified.
Although an optional parameter supplying
this improves the performance of the retrieval
of the original sale transaction.

As needed

LinkedRefundTransaction() returns a Response object instance containing a
parameter list with the following name-value pairs:

31

Name Description/Value Presence

TRANSACTION_RESULT Either Approved or Declined On completed
transaction,
except when
terminated

RECEIPT_DATA Elements required for receipting in
XML format.

On completed
transaction,
except when
terminated

TRANSACTION_ID Numeric Gateway transaction ID. On completed
transaction,
except when
terminated

ERRORS Error codes in comma separated
values format.

On Declined or
termination

Terminate Transaction
To cancel a transaction in progress, call TerminateTransaction(). If the transaction has
finished before TerminateTransaction() is called and the result is Approved then
VoidTransaction() can be used to cancel the transaction.
public Response TerminateTransaction(

List<Parameters> parameters
)

TerminateTransaction() takes the following parameter name-value pairs:

Name Description/Value Presence

TERMINATE_DISPLAY_
MESSAGE

Text to display on PIN pad screen.
[EOL] should be used to indicate line
breaks in the display message.

As needed

TERMINATE_REASON Value must be one of predefined
Terminate Reasons
Currently supported values:
EPOSTerminated

As needed

TerminateTransaction() returns a Response object instance containing a parameter
list with the following name-value pairs:

Name Description/Value Presence

ERRORS Error codes in comma separated values format. On error

32

Set Idle Message
Call SetIdleMessage() to set the message display on PIN pad screens when they are in
idle state.

public Response SetIdleMessage(
List<Parameters> parameters

)

SetIdleMessage() takes the following parameter name-value pairs:

Name Description/Value Presence

IDLE_MESSAGE Text to display on PIN pad screen. [EOL]
should be used to indicate line breaks in the
display message.

Always

SetIdleMessage() returns a Response object instance containing a parameter list with
the following name-value pairs:

Name Description/Value Presence

ERRORS Error codes in comma separated values format. On error

Most devices display an additional idle message which is configured via
TMS.

33

9. Payment Events
Connect and Configure
The Client Helper fires the connectAndConfigure event after connectAndConfigure
is called and once the configuration process is complete.

public event EventHandler<EventParameters> ConnectAndConfigureEvent

The EventParameters contains a parameter list with the following name-value pairs:

Name Description/Value Presence

CONNECT_AND_
CONFIGURE_RESULT

Will be one of the predefined values:
Success
Failure

Always

ERRORS Comma separated list of error codes. On error

Configuration Update
The Client Helper fires the configurationUpdate event after connectAndConfigure
is called and provides updates on the current state of the process.

public event EventHandler<EventParameters> ConfigurationUpdateEvent

The EventParameters contains a parameter list with the following name-value pairs:

Name Description/Value Presence

CONFIGURATION_UP
DATE

Will be one of the predefined values:
ConnectAndConfigureStarted
Registering

Always

Transaction Update
The Client Helper fires TransactionUpdate events as the customer progresses through
the transaction. Each transaction update event describes the action that triggered the event,
including EMV commands and data communication. The POS application can react to each
event as needed, such as to update a display.

public event EventHandler<EventParameters> TransactionUpdateEvent

The EventParameters contains a parameter list with the following name-value pairs:

34

Name Description/Value Presence

UPDATE Will be one of the predefined values:
Unknown
ApplicationSelectionStarted
AmountConfirmationStarted
CardRequested
CardRemovalRequested
MagstripeAccountSelectionStarted
OnlineAuthRequested
OnlineAuthCompleted
PanKeyEntryStarted
PanKeyEntryCompleted
PinEntryStarted
TippingRequested
TransactionStarted
VoiceReferralCompleted
ZipCodeRequested

Always

PAYMENT_DEVICE_
MODEL

The model of the PIN pad raising the event. Always

PAYMENT_DEVICE_
IDENTIFIER

The identifier of the PIN pad raising the
event.

Always

Card Notification
When StartTransaction() has been successfully called, the Client Helper fires
CardNotification events about card availability.

public event EventHandler <EventParameters> CardNotificationEvent

The EventParameters contains a parameter list with the following name-value pairs:

Name Description/Value Presence

NOTIFICATION Will be one of the predefined values:
Inserted
Tapped
Swiped
Removed

Always

PAYMENT_DEVICE_
MODEL

The model of the PIN pad raising the
event.

Always

PAYMENT_DEVICE_
IDENTIFIER

The identifier of the PIN pad raising the
event.

Always

Card Details
When StartTransaction() has been successfully called, the Client Helper fires
CardDetails events when the details are available. When GetCardDetails() has been

35

successfully called, the Client Helper fires a CardDetails event when the process is
finished (instead of a TransactionFinished event).

public event EventHandler <EventParameters> CardDetailsEvent

The EventParameters contains a parameter list with the following name-value pairs:

Name Description/Value Presence

TRACK2_CLEAR_TEXT Full Track 2 Data where end-to-end
encryption is enabled and the card is
allowlisted.

As needed

TRACK2_MASKED Track 2 Data masked except for first 6
and last 4 digits of PAN, expiry date
and service code.

As needed

PAN_CLEAR_TEXT Full PAN where end-to-end encryption
is not enabled. This has a maximum
length of 19 digits.

As needed

PAN_MASKED PAN masked except for first 6 and last
4 digits.

As needed

EXPIRY_DATE The expiry date of the card in the
format YYMM.

As needed

CARD_HASH_
COLLECTION

Collection of card hashes available in
XML format. Each hash is a unique
reference that can be used to identify
a card without using the PAN. The
source of each hash indicates where it
was generated for example the
payment gateway or the PIN pad.

As needed

Signature Verification Requested
During an auto-confirm transaction, the Client Helper will fire this event before sending the
TransactionFinished event if signature verification is required.

public event EventHandler <EventParameters>
SignatureVerificationRequestedEvent

The EventParameters contains a parameter list with the following name-value pairs. The
transaction will be Approved or Declined and a receipt can be issued.

Name Description/Value Presence

TRANSACTION_RESULT Approved or Declined. On completion post
CardDetails
event

RECEIPT_DATA Elements required for receipting
in XML format.

On completion post
CardDetails
event

36

When this event is received the ContinueSignatureVerification() command must
be sent in order to finish the transaction. TerminateTransaction() is also valid at this
stage and will decline the transaction as if the signature was rejected.

Transaction Finished
In any of the three messaging sequences, when StartTransaction() has been
successfully called, the Client Helper fires a TransactionFinished event when the
transaction is finished.

public event EventHandler<EventParameters> TransactionFinishedEvent

If the transaction is finished after the CardDetails event, the EventParameters contains
a parameter list with the following name-value pairs. The transaction will be Approved or
Declined and a receipt can be issued for the completed transaction. If the transaction is
finished before the CardDetails event, the EventParameters contains only the Errors
parameter indicating the transaction has been terminated. The Errors parameter contains
a list of error codes detailing the errors that prevented the transaction from being completed.
See the enumeration in the ChipDNA Framework reference CHM file for a complete list of
error messages.

Name Description/Value Presence

TRANSACTION_RESULT Approved or Declined. On completion post
CardDetails
event

RECEIPT_DATA Elements required for receipting
in XML format.

On completion post
CardDetails
event

REFERENCE Printable ASCII characters
excluding the following characters
“<>|:*?/\. Maximum length of
50 characters and may not
contain leading or trailing spaces.

On completion post
CardDetails
event

CARDEASE_REFERENCE ASCII 36 characters in the format
of a GUID. Unique transaction
generated by the payment
gateway.

On completion post
CardDetails
event if
authorization was
submitted online

CARD_HASH Unique token generated by the
payment gateway that can be
used to identify a card without
using the PAN.

On completion post
CardDetails
event if
authorization was
submitted online

CARD_REFERENCE Unique reference generated by
the payment gateway that can be
used to identify a card without
using the PAN.

On completion post
CardDetails
event if
authorization was
submitted online

37

Name Description/Value Presence

AUTH_DATE_TIME Date and Time for the transaction
in the format yyyyMMddHHmmss.

On completion post
CardDetails
event

TOTAL_AMOUNT Total amount for the transaction in
minor units.

On completion post
CardDetails
event

PAN_MASKED The obfuscated Primary Account
Number showing only the first 6
(if available) and last 4 digits.

On completion post
CardDetails
event

EXPIRY_DATE The expiry date of the card in the
format YYMM.

On completion post
CardDetails
event

SIGNATURE_
VERIFICATION_
REQUIRED

True or False. On completion post
CardDetails
event

SIGNATURE_CAPTURED True or False. On completion post
CardDetails
event

SIGNATURE_IMAGE Base 64 encoded raw image
data.

If signature was
captured on PIN
pad

SIGNATURE_IMAGE_
MEDIA_TYPE

The media type of the raw image
data once decoded.

If signature was
captured on PIN
pad

CARD_HASH_
COLLECTION

Collection of card hashes
available in XML format. Each
hash is a unique reference that
can be used to identify a card
without using the PAN. The
source of each hash indicates
where it was generated, for
example the payment gateway or
the PIN pad.

On completion post
CardDetails
event if
authorization was
submitted online

TRANSACTION_ID Numeric Gateway transaction ID On completion post
CardDetails
event

CUSTOMER_VAULT_ID Up to 36 character string, ex:
12345ABCDE

As needed on
completion post
CardDetails
event

CARD_HOLDER_FIRST_
NAME

Card holder first name retrieved
from the card.

On completion post
OnlineAuthComp
leted
TransactionUpd
ate event

38

Name Description/Value Presence

CARD_HOLDER_LAST_N
AME

Card holder last name retrieved
from the card.

On completion post
OnlineAuthComp
leted
TransactionUpd
ate event

ERRORS Error codes in comma separated
values format.

On decline or
completion pre
CardDetails
event

When a transaction using an allowlisted card is finished, the ERRORS
parameter includes an error code named
AllowlistedCardPresented. In versions of ChipDNA Server prior to
3.07, this error code was named WhitelistedCardPresented.

When a transaction is completed the receipt data is returned in the parameter
RECEIPT_DATA. This is returned in XML so a helper method
GetReceiptDataFromXml() is provided to extract this data into a ReceiptData object
which can be used by the integrator to generate receipts. For each receipt entry the
following is provided:

1) ID – used to identify each entry.
2) Label – recommended label that should appear on receipt.
3) Value – the value for this entry.
4) Type – either Mandatory, Optional or Debug according to guidelines regarding

receipt content. All Mandatory items must be shown on the receipt.
5) Priority – order in which items should appear on the receipt according to best

practices. The priority is a guideline only and the order may be rearranged.

39

10. Utility Methods
Request TMS Update
Call RequestTmsUpdate() to request the Server connects to TMS to perform an update.

public Response RequestTmsUpdate(
List<Parameters> parameters

)

RequestTmsUpdate() takes the following parameter name-value pairs:

Name Description/Value Presence

TMS_REQUEST_TYPE TmsConfiguration (default). As needed

UPDATE_TYPE Either Partial (default) or Full. As needed

CONFIGURATION_UPDATE_
SCHEDULE

Either Immediate (default) or
MaintenanceTime.

As needed

RequestTmsUpdate() returns a Response object instance containing a parameter list
with the following name-value pairs:

Name Description/Value Presence

ERRORS Error codes in comma separated
values format.

On error

It is recommended that all integrations expose the TMS update
mechanism. This allows updated TMS properties to be downloaded
immediately without the need to wait for a scheduled update.

Get Status
Call GetStatus() to get the current status of different components of the Server in a single
call. Individual statuses can be requested by passing the parameter keys into
GetStatus(). All statuses will be returned if parameters is empty.

public Response GetStatus(
List<Parameters> parameters

)

GetStatus() takes the following parameter name-value pairs:

Name Description/Value Presence

CHIPDNA_STATUS CHIPDNA_STATUS As needed

VERSION_INFORMATION VERSION_INFORMATION As needed

PAYMENT_PLATFORM_STATUS PAYMENT_PLATFORM_STATUS As needed

40

Name Description/Value Presence

PAYMENT_DEVICE_
STATUS

PAYMENT_DEVICE_
STATUS

As needed

REQUEST_QUEUE_
STATUS

REQUEST_QUEUE_
STATUS

As needed

TMS_STATUS TMS_STATUS As needed

GetStatus() returns a Response object instance containing a parameter list with the
following name-value pairs:

Name Description/Value Presence

ERRORS Error codes in comma separated values
format.

On error

CHIPDNA_STATUS The transaction processing status of the
Server in XML format. This contains a
flag to indicate whether a transaction is
currently being processed either True or
False and whether an issue exists that
may prevent transactions from being
processed. The latter will be one of the
predefined values:
Uninitialized
None
NoPinPadsAvailable
NoPinPadsConfigured
EncryptionCertRequired
EncryptionCertInvalid

On no error

VERSION_
INFORMATION

Information obtained using
GetVersion() in XML format.

On no error

PAYMENT_PLATFORM_
STATUS

The status of the payment gateway in
XML format. This contains the machine's
local date and time, the local date and
time according to the payment platform
and whether the Server is able to
connect to the payment gateway either
Unavailable or Available.

On no error

PAYMENT_DEVICE_
STATUS

The status of each PIN pad configured
with the Server for this Client in XML
format. For each PIN pad this includes
the configured Device ID and model, the
current configuration state (either
NotConfigured,
ConfigurationInProgress,
FirmwareUpdateInProgress or
Configured), whether it is processing
a transaction and if it is available along
with the availability error and information
(as described for the

On no error

41

Name Description/Value Presence

PaymentDeviceAvailabilityChang
e event).

For Miura devices, information about the
battery status is also included:
BatteryPercentage,
BatteryChargingStatus (one of

Not Charging
Charging
Fully Charged),

BatteryStatusUpdateDateTime,
BatteryStatusUpdateDateTimeFor
mat (currently dd/MM/yyyy
HH:mm:ss).

REQUEST_QUEUE_
STATUS

The status of the queue of requests to
be sent to the payment gateway in XML
format. This includes the number of
credit, credit confirm, credit void, debit,
debit confirm and debit void requests still
to be processed.

On no error

TMS_STATUS The status of TMS configuration in XML
format. This includes the date and time
the last update was performed and the
number of days until the next one is
required.

On no error

Get Transaction Information
Call GetTransactionInformation() to get the current information corresponding to the
specified transaction.

public Response GetTransactionInformation(
List<Parameters> parameters

)

GetTransactionInformation() takes the following parameter name-value pairs:

Name Description/Value Presence

REFERENCE The reference of the transaction.
Printable ASCII characters excluding
the following characters “<>|:*?/\.
Maximum length of 50 characters and
may not contain leading or trailing
spaces. This should be the reference
provided by the
TransactionFinished event.

Always

GetTransactionInformation() returns a Response object instance containing a
parameter list with the following name-value pairs:

42

Name Description/Value Presence

ERRORS Error codes in comma separated
values format.

On error

REFERENCE The reference of the transaction.
Printable ASCII characters excluding
the following characters
“<>|:*?/\. Maximum length of 50
characters and may not contain
leading or trailing spaces.

On no error

TRANSACTION_RESULT Approved or Declined On no error

TRANSACTION_STATE Either Uncommitted, Committed
or Voided

On no error

TRANSACTION_DATE_
TIME

The date and time of the transaction
in the format yyyyMMddHHmmss.

On no error

CARDEASE_REFERENCE
_STAGE_1

ASCII 36 characters in the format of
a GUID. Unique transaction
generated by the payment gateway.

Present when
authorization
has been
submitted
online

CARDEASE_REFERENCE
_STAGE_2

ASCII 36 characters in the format of
a GUID. Unique transaction
generated by the payment gateway.

Present when
confirm or void
has been
submitted
online

CARD_HASH Unique token generated by the
payment gateway that can be used
to identify a card without using the
PAN.

Present when
transaction has
been submitted
online

CARD_REFERENCE Unique reference generated by the
payment gateway that can be used
to identify a card without using the
PAN.

Present when
transaction has
been submitted
online

TRANSACTION_ID Numeric Gateway transaction ID. Always

CUSTOMER_VAULT_ID Up to 36 character string, ex:
12345ABCDE

If available

Get Version
Call GetVersion() to get the version data of the Server.

public Response GetVersion()

GetVersion() returns a Response object instance containing a parameter list with the
following name-value pairs:

43

Name Description/Value Presence

CHIPDNA_VERSION Build version of the Server. Always

CHIPDNA_RELEASE_
NAME

Release name of the Server. Always

CHIPDNA_APP_
NAME

Application name of the Server. Always

Get Merchant Data
Call GetMerchantData() to get the current information corresponding to the configured
merchant accounts. This information includes, the currencies supported, transaction types
supported and the merchant’s name and number.

public Response GetMerchantData()

GetMerchantData() returns a Response object instance containing a parameter list with
the following name-value pairs:

Name Description/Value Presence

ERRORS Error codes in comma separated values
format.

On error

MERCHANT_DATA The current merchant account information in
XML format.

On no error

Run Request Queue
Call RunRequestQueue() to immediately run the request queue and optionally re-run
failed transactions after a specified date. The request queue automatically runs periodically
and processes any offline transactions that are queued for upload to the payment gateway.
However, the automatic request queue process will not upload failed transactions, whereas
runRequestQueue() will. This command can help ensure stored transactions, such as
deferred authorizations, are uploaded more quickly and reliably when the SDK is operating
in an environment with an intermittent internet connection.

The result of every request queue process, whether run automatically or via this method, is
reported back to the integrating application via RequestQueueRunCompletedEvent.

public Response RunRequestQueue(
List<Parameters> parameters

)

RunRequestQueue() takes the following parameter name-value pairs:

44

Name Description/Value Presence

REQUEST_QUEUE_TYPE The type of request queue to run.
Values can be Pending, Failed or
PendingAndFailed. Defaults to
Pending if not sent.

As needed.

RUN_QUEUE_FAILED_
TRANSACTIONS_FROM_
DATE

The date failed transactions should be
processed from. The Server will run all
failed transactions from this date until
the present-day.

Always if
REQUEST_
QUEUE_TYPE
is Failed
or
PendingAnd
Failed.

Failed transactions should be processed with caution. While the
SDK includes this method to process these, using it may go
against acquirer / processor and scheme rules.

RunRequestQueue() returns a Response object instance containing a parameter list with
the following name-value pairs:

Name Description/Value Presence

ERRORS Error codes in comma separated values format. On error

45

11. Utility Events
Payment Device Availability Change
The Client Helper fires a PaymentDeviceAvailabilityChange event when there is a
change in the availability of a PIN pad to process transactions. A PIN pad may not be
available to process transactions for a number of reasons, for example it has been
disconnected or the actual Device ID does not match the Device ID specified in the
configuration file. If a PIN pad is not available further information relating to the error will be
returned when possible, for example if there is a Device ID mismatch the actual Device ID
will be returned.
public event EventHandler <EventParameters> PaymentDeviceConnectionEvent

The EventParameters contains a parameter list with the following name-value pairs:

Name Description/Value Presence

PAYMENT_DEVICE_
MODEL

The model of the PIN pad raising the
event.

Always

PAYMENT_DEVICE_
IDENTIFIER

The identifier of the PIN pad that is
raising the event.

Always

IS_AVAILABLE True or False. Always

AVAILABILITY_ERROR Will be one of the predefined values:
None
CommsLink
DeviceIdMismatch
InvalidFirmwareVersion
DeviceNotConfigured

Always

AVAILABILITY_ERROR_
INFORMATION

Further details relating to the
AVAILABILITY_ERROR in XML
format.

Always

Tms Update
When RequestTmsUpdate() has been successfully called, the Client Helper fires a
TmsUpdate event when the update is finished with the result of the request.
public event EventHandler<EventParameters> TmsUpdateEvent

The EventParameters contains a parameter list with the following name-value pairs:

Name Description/Value Presence

TMS_REQUEST_TYPE The type of update that was requested. Always

TMS_UPDATE_
RESULT

The result of the request is either
Success or Failed.

Always

ERRORS Comma separated list of error codes. If the update
failed

46

Request Queue Run Completed
The Client Helper fires a RequestQueueRunCompletedEvent after the request queue is
processed. Whether that is done automatically by the Server or after a call to
RunRequestQueue().

public event EventHandler<EventParameters> RequestQueueRunCompletedEvent

The EventParameters contains a parameter list with the following name-value pairs:

Name Description/Value Presence

REQUEST_QUEUE_
TYPE

The type of request queue run. Values can
be Pending, Failed or
PendingAndFailed.

Always

REQUEST_QUEUE_
REPORT

Data collected while running the request
queue in XML format. This can be
deserialized via helper methods in the
Client.

Always

ERRORS Comma separated list of error codes. If the
request
queue
encountered
an error

47

12. Glossary of Terms
Term Explanation

Cardholder The customer that is trying to pay with a chip card.

Chip card ‘Smart’ payment cards which include an integrated circuit microchip.
Also known as:

● ‘ICC’ or ‘IC card’, from Integrated Circuit.
● ‘Magstripe’, in reference to the magnetic strip card type

which actually pre-dates the integrated microchip type.
● ‘Chip and PIN’, from the brand name adopted by the

banking industries in the United Kingdom and Ireland for the
rollout of the EMV smart card payment system.

● ‘EMV card’, from EuroPay, MasterCard and Visa (see
below).

CLI Command Line Interface.

EMV See ‘EuroPay, MasterCard and Visa’.

EuroPay, MasterCard
and Visa

A global standard for inter-operation of chip cards and chip card
capable PIN pads, for authenticating credit and debit card
transactions.

GUI Graphical User Interface.

Payment Gateway The hosted interface that provides payment processing services via
the certified integrations with processors.

PCI DSS Payment Card Industry Data Security Standard. An information
security standard for organizations that store, process and transmit
chip card data.

PIN pad A transaction terminal device which includes a key pad for the user
to enter a Personal Identification Number (PIN) for authentication.
The SDK works with both attended and unattended PIN pads.

POS Point of Sale. The point at which a customer makes a payment to
the merchant.

SDK Software Development Kit.

Terminal Management
System

The hosted Terminal Management System that provides
configuration and software information to deployed installations.

TMS See ‘Terminal Management System’.

48

13. Troubleshooting & Support
For assistance please send an email to your payment gateway provider with the following
information:

1) Description of the problem you’re experiencing.
2) Attach configuration and log files from your SDK installation directory:

a) Server configuration file. For example:
C:\Payment Device SDK\ChipDNA Server\chipdna.config.xml

b) Client GUI configuration file. For example:
C:\Payment Device SDK\ChipDNA Client
GUI\ChipDNAClientGUI.exe.config

c) Server log file. For example:
C:\Payment Device SDK\ChipDNA
Server\logs\ChipDNAServer.log

The Server creates a daily log but does not delete any of these files
automatically. It is the responsibility of the integrator to periodically
delete log files if storage is an issue.

49

Appendix 1. PIN pad Device ID Examples

Figure 4 - Device ID on a VeriFone Ux300 and UxFTMA VIPA PIN pad.

Figure 5 – Device ID on an Ingenico iPP350 RBA PIN pad.
The Device ID used in the configuration file must match the ID returned by the firmware on
the device. For the Ingenico iPP350 RBA, this is the last eight digits of the serial number
prepended with two leading zeros. 0080252787 should be used for the device in the image
above.

Figure 6 – Device ID on an Ingenico iPP320 RBA PIN pad.

Figure 7 – Device ID on a Miura M020/M021 PIN pad.

50

The Device ID used in the configuration file must match the ID returned by the firmware on
the device. For the Miura PIN pads, this is the serial number with the first zero and hyphen
omitted. 17001271 should be used for the device in the image above.

Figure 8 - Device ID on an Ingenico iUC285 RBA PIN pad.

Figure 9 - Device ID on an Ingenico iUC285 RAM PIN pad.

Figure 10 – Device ID on an Ingenico Lane/3000 RAM PIN pad.
The Device ID used in the configuration file must match the ID returned by the firmware on
the device. For the Ingenico Lane/3000 PIN pads, this is the last nine digits of the serial
number shown in the red box with an extra zero prepended. For example for the device in
the above image the Device ID 0003287225 should be used.

Figure 11 – Device ID on Ingenico Lane/3000, Lane/5000, Lane/7000, Self/2000, Self/4000
and Self/5000 UPP PIN pads.

51

The Device ID used in the configuration file must match the ID returned by the firmware on
the device. For the Ingenico Lane UPP PIN pads, this is the last 16 digits of the serial
number shown in the pink box. 3031078003256482 should be used for the device in the
image above. The serial number can also be viewed on the device screen by pressing 0 four
times.

Figure 12 – Device ID on Ingenico Self/4000 RAM PIN pad.
The Device ID used in the configuration file must match the ID returned by the firmware on
the device. For the Ingenico Self/4000 RAM PIN pad, this is the entire number shown on the
screen or the last eight digits of the serial number printed on the underside of the device
with two zeros prepended. 0023895621 should be used for the device in the images above.

Figure 13 – Device ID on Ingenico Self/2000 RAM PIN pad.
The Device ID used in the configuration file must match the ID returned by the firmware on
the device. For the Ingenico Self/2000 RAM PIN pad, this is the last eight digits of the serial
number printed on the underside of the device with two zeros prepended. 0025471019
should be used for the device in the image above.

Figure 14 – Device ID on Ingenico Self/7000-8000 RAM device combination.

52

The Device ID used in the configuration file must match the ID returned by the firmware on
the device. For the Ingenico Self/7000-8000 RAM device combination, this is the last eight
digits of the serial number printed on the underside of the Self/7000 unit with two zeros
prepended. 0026514737 should be used for the device in the image above.

53

Appendix 2. Processing of Transactions

Step 1 - Authorization
After the payment gateway sends the transaction information to the payment processor the
processor transmits the transaction amount and customer information for verification and
authorization. The processor then returns a response that indicates whether the transaction
was approved or declined. A hold is put on that amount in the cardholder’s account;
however, the amount is not transferred until the settlement process described in the next
section.

Each time the merchant performs a transaction the payment gateway authorizes the
transaction and stores the transaction information for settlement in a batch.

Figure 14 - Credit card transaction authorization process.

Step 2 - Settlement
In order to receive payment for the transactions submitted, the payment gateway will
perform settlement on the merchant’s behalf by sending the batch of transactions to the
processor.

Figure 15 - Manual settlement process.

54

Step 3 - Funding
At a predefined time, the payment processor processes the settlements the payment
gateway has sent. It creates a settlement batch for each connected financial institution and
then transmits the batch to the appropriate entity. Upon processing the settlement batch,
funds are routed to the merchant’s account for deposit.

Figure 16 - Funding process.

55

Appendix 3. Supported PIN pads and
Software Versions
The Server supports a variety of different PIN pads and communication protocols for those
PIN pads. Table 4 details the currently supported PIN pads and Table 5 details the software
versions.

Please contact your payment gateway provider to purchase an
approved PINpad. PINpads obtained outside of approved channels
cannot be supported.

Table 4 - Supported PIN pads.

Ingenico iPP320 (RBA) US Ready Ready Ready

Ingenico iPP350 (RBA) US Ready Ready Ready

Ingenico iUN/iSelf (RAM) UK/Europe Ready Ready N/A

Ingenico iUN/iSelf LE (RBA) US Ready Ready Ready

Ingenico iUC285 (RBA) US Ready Ready Ready

Ingenico iUC285 (RAM) UK/Europe Ready Ready N/A

Ingenico Lane/3000 (RAM) UK/Europe Ready Ready N/A

Ingenico Lane/3000 (UPP) US Ready Ready Ready

Ingenico Lane/5000 (UPP) US Ready Ready Ready

Ingenico Lane/7000 (UPP) US Ready Ready Ready

Ingenico Self/2000 (RAM) UK/Europe N/A Ready N/A

Ingenico Self/2000 (UPP) US N/A Ready N/A

Ingenico Self/4000 (RAM) UK/Europe Ready Ready N/A

Ingenico Self/4000 (UPP) US Ready Ready N/A

Ingenico Self/5000 (UPP) US Ready Ready N/A

56

Ingenico Self/7000-8000
(RAM)

UK/Europe Ready Ready N/A

Miura M020 UK/Europe/US Ready Ready Ready

VeriFone Ux300 (VIPA) UK/Europe/US Ready Ready N/A

VeriFone UxFMTA (VIPA) UK/Europe/US Ready Ready N/A

57

Table 5 - Supported software versions for PIN pads.

Ingenico iPP320 (RBA) US 23k6 (23.52.6)

Ingenico iPP350 (RBA) US 23k6 (23.52.6)

Ingenico iUN/iSelf (RAM) UK/Europe 2129

Ingenico iUN/iSelf LE (RBA) US 23k6 (23.52.6)

Ingenico iUC285 (RBA) US 23k6 (23.52.6)

Ingenico iUC285 (RAM) UK/Europe 2129

Ingenico Lane/3000 (RAM) UK/Europe 2022

Ingenico Lane/3000 (UPP) US 7.82.05

Ingenico Lane/5000 (UPP) US 7.82.05

Ingenico Lane/7000 (UPP) US 7.82.05

Ingenico Self/2000 (RAM) UK/Europe 2238

Ingenico Self/2000 (UPP) US 7.83.19

Ingenico Self/4000 (RAM) UK/Europe 2238

Ingenico Self/4000 (UPP) US 7.83.15

Ingenico Self/5000 (UPP) US 7.83.15

Ingenico Self/7000-8000
(RAM)

UK/Europe 2238

Miura M020 UK/Europe/US 1-65

VeriFone Ux300 (VIPA) UK/Europe/US 6.8.2.21

VeriFone UxFMTA (VIPA) UK/Europe/US 6.8.2.21

58

Appendix 4. Firewall Configuration
The Server communicates with several internet services. It must be able to communicate
with Direct Connect (https://live.cardeasexml.com) and TMS (https://tms.cardeasexml.com)
on the payment gateway. This may require changes to your firewall configuration.

The port number the Server is hosted on is configured in the configuration XML file (see
Configure and Install for more details) and the default value is 1869.

The table below lists the IP addresses and port numbers for each external service used by
the Server.

Table 6 - IP addresses and port numbers for external services.

Service Platform IP addresses Ports

Direct Connect Live 91.197.92.250
91.197.93.250
91.197.93.251
91.197.94.250
91.197.94.252
74.120.0.250
74.120.1.250
74.120.1.251
74.120.2.250
74.120.2.252

443

Test 91.197.92.230
91.197.93.230
91.197.94.203
91.197.95.230

443

TMS Live 91.197.92.239
91.197.93.239
91.197.94.239
74.120.0.239
74.120.1.239
74.120.2.239

443

Test 91.197.92.219
91.197.93.219
91.197.94.219
91.197.95.219

443

59

https://live.cardeasexml.com/
https://tms.cardeasexml.com/

Appendix 5. Configuring client-side
Logging with the Java Client
The Java client library (ChipDnaClientLib.jar) supports logging using Log4j. This
feature is disabled by default; to enable it, call setLoggerEnabled() and ensure that
dependencies log4j-api-2.17.1.jar and log4j-core-2.17.1.jar are available in
the classpath. If you wish to confirm that logging is enabled, call isLoggerEnabled().

By default, Log4j outputs errors to the console only. For convenience we have provided a
ready-made Log4j configuration file (client.config.log4j2.xml) that will redirect
output to a file (logs/ChipDNAClient.log). To use, the config file must be available in
the application working directory before logging is enabled.

60

Appendix 6. Supported PIN pads and
Supported Features
The SDK supports a variety of different PIN pads and features for those PIN pads. Table 7
details the currently supported PIN pads and the features each PIN pad supports.

Table 7 – Supported PIN pads and each supported feature.

Ingenico iPP320 (RBA) US Yes Yes Yes Yes Yes Yes Yes

Ingenico iPP350 (RBA) US Yes Yes Yes Yes Yes Yes Yes

Ingenico iUN/iSelf (RAM) UK/Europe Yes Yes No No No No Yes

Ingenico iUN/iSelf LE (RBA) US Yes No No No No Yes Yes

Ingenico iUC285 (RBA) US Yes No No No No Yes Yes

Ingenico iUC285 (RAM) UK/Europe Yes Yes No No No No Yes

Ingenico Lane/3000 (RAM) UK/Europe Yes Yes Yes Yes Yes No Yes

Ingenico Lane/3000 (UPP) US Yes No Yes Yes Yes Yes Yes

Ingenico Lane/5000 (UPP) US Yes No Yes Yes Yes Yes Yes

Ingenico Lane/7000 (UPP) US Yes No Yes Yes Yes Yes Yes

Ingenico Self/2000 (RAM) UK/Europe Yes No No No No No Yes

Ingenico Self/2000 (UPP) US Yes No No No No No Yes

Ingenico Self/4000 (RAM) UK/Europe Yes Yes No No No No Yes

Ingenico Self/4000 (UPP) US Yes No No No No No Yes

Ingenico Self/5000 (UPP) US Yes No No No No No Yes

Ingenico Self/7000-8000
(RAM)

UK/Europe Yes Yes No No No No Yes

Miura M020 UK/Europe/US Yes No Yes Yes Yes Yes Yes

VeriFone Ux300 (VIPA) UK/Europe/US No Yes No No No Yes Yes

VeriFone UxFMTA (VIPA) UK/Europe/US No Yes No No No Yes Yes

61

Appendix 7. Supported PIN pads and Transaction Update Event
Parameters
Some of the transaction update event parameter values apply to all PIN pads and other transaction update event parameter values apply
to particular PIN pads based upon supported features. Table 8 details the currently supported PIN pads and the transaction update event
parameter values that each PIN pad supports.

Table 8 – Supported PIN pads and supported transaction update parameter values.

Ingenico iPP320 (RBA) US No No Yes Yes No Yes Yes Yes Yes No Yes Yes Yes

Ingenico iPP350 (RBA) US No No Yes Yes No Yes Yes Yes Yes No Yes Yes Yes

Ingenico iUN/iSelf (RAM) UK/Europe Yes Yes Yes Yes No Yes Yes No No Yes No No No

Ingenico iUN/iSelf LE(RBA) US Yes Yes Yes Yes Yes Yes Yes No No Yes No No Yes

Ingenico iUC285 (RBA) US Yes Yes Yes Yes No Yes Yes No No No No No No

Ingenico iUC285 (RAM) UK/Europe No Yes Yes Yes No Yes Yes No No No No No No

62

Ingenico Lane/3000 (RAM) UK/Europe Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes No

Ingenico Lane/3000 (UPP) US Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Ingenico Lane/5000 (UPP) US Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Ingenico Lane/7000 (UPP) US Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Ingenico Self/2000 (RAM) UK/Europe No No Yes No No Yes Yes No No Yes No No No

Ingenico Self/2000 (UPP) US No No Yes No No Yes Yes No No Yes No No No

Ingenico Self/4000 (RAM) UK/Europe Yes Yes Yes Yes No Yes Yes No No Yes No No No

Ingenico Self/4000 (UPP) US Yes Yes Yes Yes Yes Yes Yes No No Yes No No No

Ingenico Self/5000 (UPP) US Yes Yes Yes Yes Yes Yes Yes No No Yes No No No

Ingenico Self/7000-8000
(RAM)

UK/Europe Yes Yes Yes Yes No Yes Yes No No Yes No No No

Miura M020 UK/Europe/US Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No

63

VeriFone Ux300 (VIPA) UK/Europe/US Yes Yes Yes Yes Yes Yes Yes No No Yes No No No

VeriFone UxFMTA (VIPA) UK/Europe/US Yes Yes Yes Yes Yes Yes Yes No No Yes No No No

64

