Payment Device SDK
for Windows
Integration Guide

For Software Version 3.12 (Myrddin)

Document Version: 2.8
Date: 22nd June 2023

@Copyright 2023 Gateway Services. All Rights Reserved.

TABLE OF CONTENTS

TABLE OF CONTENTS
1. How to Use This Guide
Caution
Key Point or Important Concept
Helpful Hint
Reference Material
Computer Text
References and Hyperlinks
Definitions
2. Introduction - Welcome to the Payment Device SDK for Windows
Payment Device SDK Software
3. What You Will Need
Payment Gateway Account
Payment Device SDK
Sandbox/Operating Environment
4. Transaction Quick Start
Transaction Quick Start Procedure
Ready the SDK Components
Configure
Execute
Troubleshoot
5. Integration Quick Start
Transaction Diagram
6. Configure and Install
Ready the SDK Components

Configure The Server

© 0 W 0 0 0 0 0 0 =

10

11
11
12
13
13
13
13
14
14
15
15
16
16
16

Configure The Server Data Storage
Configure The Server for SSL
Configure The Server for use with a Web Proxy
Install and Run The Server
Run ChipDNA Server as a Console Application
Run ChipDNA Server as a Windows Service
Configure and Run The Sample Client Applications
The Client CLI
Configure The Server for Production Processing
Terminal Management System (TMS)
. Messaging System
Standard Transaction Messaging
Auto-confirm Transaction Messaging
. Payment Methods
Initialization
ConnectAndConfigure
Start Transaction
Confirm Transaction
Void Transaction
Continue Signature Verification
Linked Refund Transaction
Terminate Transaction
Set Idle Message
. Payment Events
Connect and Configure
Configuration Update

Transaction Update

18
18
18
19
19
19
20
20
21
21
22
23
24
25
25
25
26
28
29
30
31
32
33
34
34
34
34

Card Notification
Card Details
Signature Verification Requested
Transaction Finished
10. Utility Methods
Request TMS Update
Get Status
Get Transaction Information
Get Version
Get Merchant Data
11. Utility Events
Payment Device Availability Change
Tms Update
Request Queue Run Completed
12. Glossary of Terms
13. Troubleshooting & Support
Appendix 1. PIN pad Device ID Examples
Appendix 2. Processing of Transactions
Step 1 - Authorization
Step 2 - Settlement
Step 3 - Funding
Appendix 3. Supported PIN pads and Software Versions
Appendix 4. Firewall Configuration

Appendix 6. Supported PIN pads and Supported Features

Appendix 7. Supported PIN pads and Transaction Update Event

Parameters

35
35
36
37
40
40
40
42
43
a4
46
46
46
47
48
49
50
53
53
53
54
55
58
60

61

Document History

Document Software Date
Version Version yyyy-mm-dd
1.18 Release 3.02 2021-06-01
(Houdini)
1.19 Release 3.03 2021-08-02
(Oasis)

Summary of Changes

Added with a table
containing each supported PIN pad
and each corresponding supported
feature.

Added with a table
containing each supported PIN pad
and each corresponding supported
Transaction Update Event
parameter value.

Added support for the Ingenico
Lane/3000, iPP350, iSelf, iSelf LE
and iUC285 RAM devices for use in
the UK and Europe and the Miura
MO020 device for use in the UK,
Europe and US.

Updated - Added UK and
Europe to the region column for
Verifone Ux300 and UxFMTA
devices.

Updated - EMV Contact
(Chip) and EMV Contactless (Chip)
are now Ready for the Ux300 and
UxFMTA devices.

1.20

2.0

Release 3.04
(Ultron)

Release 3.05
(Lapis Lazuli)

2021-09-28

2022-03-07

Updated and -
Miura M020 and M021 devices now
support PAN Key Entry. Ingenico
iSelf, iSelf LE and iUC285 RBA
devices now support
ApplicationSelectionStarte
d and
AmountConfirmationStarted
transaction update events and no
longer support Card Removal
Enforced. The iSelf and iSelf LE
also support the
PinEntryStarted event and the
new
MagstripeAccountSelectionS
tarted event. The Ingenico
Lane/3000, Lane/5000 and
Lane/7000 UPP devices now
support all transaction update
events.

Clarified that macOS is not
supported in

and

Updated document template.

SDK rebranded from ‘ChipDNA
SDK’ to Payment Device SDK.
Amendments made throughout the
document as appropriate.

Added values to the VOID REASON
parameter in

Updated - Added 23k6
(23.52.6) for all Ingenico RBA
devices and 6.8.2.21 for all Verifone
VIPA devices.

Updated -
MagstripeAccountSelectionS
tarted event is now supported
with the Miura M020, Verifone
Ux300 and Verifone UxFMTA
devices.

2.1

2.2

2.3

24

2.5

Release 3.06
(Nostromo)

Release 3.06
(Nostromo)

Release 3.07
(Prime)

Release 3.08
(Mastodon)

Release 3.09
(Arcticus)

2022-04-25

2022-06-17

2022-08-10

2022-09-26

2022-11-07

Added method
and
event.

Clarified the Server’s data storage
requirements in

Updated - Added 7.82.05
for Lane 3000/5000/7000 UPP
devices.

Addition of battery status
information in

PAYMENT DEVICE STATUS
response to

Error code returned by

renamed from
WhitelistedCardPresented to
AllowlistedCardPresented.

Updated - Added 2022 for
Lane 3000 RAM devices.

Updated

parameters to include
CREDENTIAL ON FILE FIRST
STORE and

CREDENTIAL ON FILE REASON

Added support for the Ingenico
Self/4000 RAM device for use in the
UK and Europe.

Removed support for the following
devices:

Ingenico iPP350 RAM
Ingenico iISC250 RBA
Ingenico iSelf RBA
VeriFone Mx925 XPI
VeriFone Mx915 XPI
VeriFone Vx820 XPI

Added detailing how to
enable Java client-side logging.

Added support for the Ingenico
Self/4000 and Self/5000 UPP
devices for use in the US.

2.6 Release 3.10 2023-01-23 Updated - Added 2238 for
(Great Bear) Self 4000 RAM devices.

Added support for the Ingenico
Self/2000 UPP device for use in the

Us.
2.7 Release 3.11 2023-03-13 Added support for the Ingenico
(Lake Louise) Self/2000 RAM device for use in the

UK and Europe.

Added Windows 11 as a supported
operating system in

Updated - Added MPI 1-65
for Miura devices.

2.8 Release 3.12 2023-06-22 Added support for the Ingenico
(Myrddin) Self/7000 with Self/8000 RAM device
combination, for use in the UK and
Europe.

1. How to Use This Guide

Throughout this guide you will notice a number of visual indicators and styles used to
emphasize important information. These are explained below.

Critical information that must be obeyed to ensure success or avoid
significant problems.

Key information that you should check you understand fully before
continuing.

Hints and tips to help you act more effectively or avoid common
mistakes.

References to further information outside this guide, such as international
standards and useful Internet addresses.

@

Directories, filenames, commands, variables and the like are presented in-line like this:
C:\Payment Device SDK

...or in code blocks like this:

public ClientHelper (
String terminalID

Cross-references to other parts of this guide are clickable hyperlinks presented like this:

References to Internet locations (URLSs) or clickable hyperlinks are presented like this:

Acronyms and terms which may be unfamiliar to you are listed and defined in the
, SO you can look them up at any time.

http://www.google.com/
http://www.google.com/

2. Introduction - Welcome to the Payment
Device SDK for Windows

What is the Payment Device SDK for? What are the benefits?
The SDK:

Simplifies the use of EMV (EuroPay, MasterCard and Visa) chip cards in existing
point-of-sale (POS) applications.

Provides a high level of transaction security, through integration with our payment
gateway and our end-to-end encryption technologies.

Makes rapid deployment possible — it is easy to integrate, has been acquirer-tested
and is pre-certified for certain combinations of PIN pads and acquirers.

Requires little maintenance to ensure ongoing compliance and stability — it regularly
obtains the latest configuration and PIN pad software updates automatically, via the
Terminal Management System (TMS).

In summary, the SDK makes it as easy as possible for you to handle EMV transactions in
your payment solution. For more background relating to the payment process see

What is the Payment Device SDK?
The SDK is a package of software and services from the payment gateway including:

A software development kit (SDK) for Windows and Linux-based devices. macOS is
not supported.

Configuration and PIN pad software and updates, through integration with our TMS.
Flexible integration choices for different operating environments through integration
with a range of PIN pads

Pick PINpad Select Processors Integrate Done!

What is the purpose of this guide?

This guide provides instructions to help you use the SDK to quickly and easily integrate
EMV into your payment solution.

If you are unfamiliar with any of the acronyms or terms used in this guide, please see the

Payment Device SDK Software

The SDK consists of two core components; the Server and the Client:

The Server is the application that controls a PIN pad and communicates with the
payment gateway.

The Client is the application that makes requests for payment to the Server. It also
receives feedback from the Server which may be routed as required and translated
into messages for the user or operator.

3. What You Will Need
Payment Gateway Account

Register for a gateway account with your partner:

1) Once logged in, click on Settings — Security Keys and follow the on-screen
instructions.
2) Your API Key will need to have ‘API’ source permissions only.

Keep the API Key details safe - you need them to configure the
solution for processing transactions.

Payment Device SDK

The SDK is packaged and supplied as a .zip archive. The contents are described in

Table 1 — Contents of the SDK .zip archive

Folder Name Description

ChipDNA API The documentation for the Client Helper API
Documentation (ChipDNA Framework .CHM reference files).
ChipDNA Client CLI An example Client that sends payment requests to

Server (Command Line).

ChipDNA Client CLI The source code for an example Client that uses

Source Server.

ChipDNA Client GUI An example Client that sends payment requests to
Server (Graphical).

ChipDNA Server The application that controls the PIN pads and

communicates with the payment gateway.

To view the content of any downloaded .CHM file you must first unblock
OR> it. Right-click on the file, click Properties = Unblock = OK. Then
double-click the file to open and view as normal.

8@ The Payment Device SDK was previously named ‘ChipDNA SDK’

Sandbox/Operating Environment
Operating System:

The Server will run on any device that supports the full version of Microsoft .NET
Framework 4.7.2. All deployments should be using an operating system that is
currently in vendor support, such as:

o Windows 8.1 o Windows Server 2012
o Windows 10 o Windows Server 2012 R2
o Windows 11

macOS is not supported.
Other software:

A text editor, such as Windows Notepad or Notepad++.
Hardware:

PIN pad: See for which PIN pads are supported by the Server.
Chip card for test transactions.

If you do not already have a dedicated chip card for testing purposes you
@]>) Mmay use your own personal chip card - your details are safe in our PCI
[DSS Level 1 compliant environment and the sandbox environment
cannot make real charges to your card.

4. Transaction Quick Start

This section explains how to quickly get the Server application communicating with an
example Client so that transactions can be processed in a sandbox environment.

The Quick Start examples assume use of the following:

PIN pad:
o Type: Ingenico iPP320 RBA
o Connection: USB (VCOM serial)
Server/Client communication:
o Protocol: TCP/IP
o Port: 1869

For different options to suit your installation see

several internet services. Please see

0O Firewall changes may be required so the Server can communicate with
4
for more details.

Transaction Quick Start Procedure

These steps are required only once for each installation that you wish to run.

1. If you haven’t already done so, create your API| Key as described in

2. Install the SDK by extracting the .zip archive to C: \Payment Device SDK.

[@)) You may use a different installation directory, but remember to substitute
@&y throughout the examples.

These steps are required only once for each installation that you wish to run.

1) Browse to C:\Payment Device SDK\ChipDNA Server.
2) Using your text editor, edit chipdna.config.xml at the following elements:
a) ApplicationIdentifier="*x*x***x*7: Replace asterisks (*) with the
Application Identifier or App Name.
b) Id=v**x*x*x*" in PaymentDevice: Replace asterisks with the ten-digit
number that you will find on the screen of the PIN pad (after the “S/N:” prefix).
For an example, see .
3) Check which RS-232 port the PIN pad is connected to. If it is not COM1 then at the
element Port in PaymentDevice replace COM1 with the correct value.
4) Save the file and close the text editor.

These steps are required each time you wish to run the Server and a sample Client.

1)
2)

3)

4)

5)

6)

7)

8)

Browse to C: \Payment Device SDK\ChipDNA Server.
Execute ChipDNAServer. exe.

When the Server runs it takes time to start up before it’s ready to be
[@)5) used by a Client application. If run for the first time it must perform a
[TMS configuration update and each time its run it must connect to and
initialize any configured PIN pads.

Using your text editor, edit client.config.xml and change the Terminal ID to the
value obtained during registration. If the Server is listening on a port or protocol
different to the default, then change the value as required.
Compile your preferred sample Client and then execute ensuring the configuration file
client.config.xml is in the same directory.
The Client will present a list of the available commands. Input P for “Start
Transaction” and then enter:
a) The amount in the minor value (for example: 123 for 1.23). The currency is
defined by the terminal configuration on our payment gateway.
b) The type of transaction or accept the default sale to process an Authorization
transaction.
c) A unique reference (gateway Order ID) for the transaction or accept the
auto-generated value.
At the PIN pad, you must now simulate the cardholder:

Take care when entering your PIN — if you enter it incorrectly 3 times
R hip card may b locked just as it would | | i
Py your chip card may become locked just as it would in a real transaction

attempt.

a) Insert a chip card as prompted at the PIN pad. The test transaction will start.
b) Follow the prompts on the PIN pad until the test transaction is complete.
Check the sample Client console output to see the final status (either “Approved” or
“Declined”) along with the receipt details.
View the transaction details in your gateway reporting by logging in with your
username and password.

If you experience any difficulties we’re here to help — please see

5. Integration Quick Start

In this section, we use a typical example to help you understand how to approach
integration of the SDK into your payment solution. The majority of payments will be
processed in the same way, as shown in the following Transaction Diagram.

Transaction Diagram

shows the flow of a typical EMV transaction from your perspective as the integrator.
For simplicity, the diagram assumes that the PIN is correct and no further authentication is
required. There are of course other ways in which a transaction may be processed - these
are detailed with suitable diagrams in the section.

START

Register for Transaction
Update Events

Register for Transaction
Finished Events

Start Transaction Issue Goods

Wait for Event
to be Triggered

Print Receipt

Confirm
Transaction?

Transaction Void
Update Event? Transaction

Confirm

. Transaction
Transaction
Finished Event?

6. Configure and Install

The

section uses a controlled example to demonstrate the simplicity
of using the SDK. This section provides detailed information to help you get the SDK
working in alternative environments and configurations.

Ready the SDK Components

If you have not already done so, register for a sandbox account and extract the SDK .zip
archive as described in the

section.

are not using C: \Payment Device SDK.

Remember to substitute your installation directory in all examples if you
o

Configure The Server

Before you can use the Server application you must modify the configuration XML file to suit
your specific environment.

1) Browse to C:\Payment Device SDK\ChipDNA Server where you will find a
sample configuration file (chipdna.config.xml) that you can adapt. Or for a
completely fresh start, overwrite this with a copy of the blank template file also
provided (chipdna.config.xml.template).

2) Using your text editor, edit chipdna.config.xml and change the values detailed in

to match your environment. The path of the element is given using the XPath

syntax.

3) When you have finished editing, save the file and close the text editor.

Path

/ChipDnaServer

/ChipDnaServer

/ChipDnaServer/Terminals
/Terminal/PaymentDevices
/PaymentDevice

Table 2 — Server configuration options.

Element

ApplicationIde
ntifier

MachineName

Id

Value

This must be a single word or acronym in UPPERCASE
that uniquely identifies the integrating application. It should
contain only the characters A-Z 0-9 and — and has a
maximum length of 25. This value is used by the TMS
platform to configure TMS properties specifically for an
integrating application.

This is a name used to identify the Server. This must pass
the same validation as a DNS name and although the
hostname of the machine can be used it does not have to
be. The default for this value is 1localhost.

Each PIN pad connected to the Server has a unique Device
ID - generally an ID or serial number shown on the start-up
screen or printed on the rear (for examples see

).

Path

/ChipDnaServer/Terminals
/Terminal/PaymentDevices
/PaymentDevice

/ChipDnaServer/Terminals
/Terminal /PaymentDevices
/PaymentDevice

/ChipDnaServer/Terminals
/Terminal /PaymentDevices
/PaymentDevice

/ChipDnaServer/Terminals
/Terminal/PaymentDevices
/PaymentDevice

/ChipDnaServer/Terminals
/Terminal/PaymentDevices
/PaymentDevice

/ChipDnaServer/Terminals
/Terminal /PaymentDevices
/PaymentDevice

/ChipDnaServer

Element

DeviceActive

Model

Protocol

Port

Baudrate

Standby
Message

Socket

Value

If you need to temporarily disable the configuration section
for a device use one of the following to enable or disable a
PIN pad for use with the Server:

true = Enable.

false = Disable.

Use one of the following as appropriate to your hardware
and region:
Ingenico-iPP320-RBA
Ingenico-iPP350-RBA
Ingenico-iSelf-RAM
Ingenico-iSelfLE-RBA
Ingenico-iUC285-RAM
Ingenico-iUC285-RBA
Ingenico-Lane-3000-RAM
Ingenico-Lane-3000-UPP
Ingenico-Lane-5000-UPP
Ingenico-Lane-7000-UPP
Ingenico-Self-2000-RAM
Ingenico-Self-2000-UPP
Ingenico-Self-4000-RAM
Ingenico-Self-4000-UPP
Ingenico-Self-5000-UPP
Ingenico-Self-7000-8000-RAM
Miura-M020-MPI
Miura-M021-MPI
VeriFone-Ux300-VIPA
VeriFone-UxFMTA-VIPA

SERIAL

This value must match the appropriate COM port, such as
COML1. (See for more on this).

This must match the baud rate defined in the configuration
of the PIN pad. Please consult your PIN pad documentation
for more information.

Enter a message to be displayed on the PIN pad when it is
in standby/idle mode. The number of characters that can
be displayed is device specific. [EOL] should be used to
indicate line breaks in the display message.

Enter the IP address and port number (between 1024 and
65535) that ChipDNA Server is hosted on for
communication. The two values should be concatenated
using a colon. The default value is 127.0.0.1:18609.

The Server requires data storage for TMS configuration and transaction data. By default the
Server will store data in AppData. The Server must have read/write access to AppData and
AppData must persist.

The chipdna.config.xml file has an optional FileStore element which can be used to
change the data storage location. The path to the storage location must be absolute. For
example, to specify the path C: \Programbata\ the XML configuration file will contain the
following:

E<FileStore> ;
: <Location>C:\ProgramData\</Location>
E</FileStore> '

ThIS additional configuration element should only be used if the integration requires a
location different to the default.

The Server will not allow TMS updates or any payment methods to
be performed if the disk space is below 10MB.

access AppData or if AppData is frequently wiped as is the case

An alternative storage location must be used if the Server cannot
@ when is enabled.

The Server can be configured to use SSL to communicate with the Client(s). An additional
element CertificateHash must be added in chipdna.config.xml and used to specify
the Certificate Hash. For example:

i<ChipDnaServer> ;
: <Socket>127.0.0.1:1869</Socket> :
<CertificateHash> ;
E 72086bb5184ecad4adeefl9b20e52566d87e44dasd
: </CertificateHash> '
i </ChipDnaServers> ;

The C++ client is dependent on OpenSSL. It is the integrator’s
responsibility to link and maintain the OpenSSL library and to
ensure it is using the latest version. For Windows download the
library from the OpenSSL website

The Server can be configured to use a web proxy to communicate with the payment
gateway and TMS. An additional element webProxy must be added in
chipdna.config.xml and used to specify the IP address or hostname and port of the
web proxy. If the web proxy requires authentication the username and password should also
be specified in the webProxy element. For example:

https://docs.microsoft.com/en-us/windows-hardware/customize/enterprise/unified-write-filter

<ChipDnaServers>
<WebProxys>
<Connection>proxy.url.tld:3128</Connection>
<Usernames>username</Username>
<Password>password</Password>
</WebProxy>
</ChipDnaServers>

Install and Run The Server

The Server can be executed as either a console application or installed as a Windows
Service. Running it as a console application is useful during integration and debugging,
however we would recommend installation as a Windows Service as it allows for automatic
startup as a user that is not logged in. The following sections detail how to install and use
the Server in either mode.

The following instructions detail how to run the Server as a console application. They
assume that the Server has been configured as described in the
section.

1) Browse to C:\Payment Device SDK\ChipDNA Server.
2) Execute ChipDNAServer.exe.

The following instructions detail how to run the Server as a Windows Service. They assume
that the Server has been configured as described in the section and
the user has administrative privileges.

1) Browse to C:\Payment Device SDK\ChipDNA Server.

2) Using your text editor, edit service.install.bat and make sure that binpath
shows the correct full path for ChipDNAServer.exe (in our examples this is
C:\Payment Device SDK\ChipDNA Server\ChipDNAServer.exe).

3) Execute service.install.bat.

If for any reason the installation fails, use the command prompt to run the
@)} following command which will uninstall any previous Server Service
(- installations: sc delete CreditcallChipDNAServer. Then try
installing again.

4) By default, the CreditcallChipDNAServer service is installed to run under the
‘Local System’ account and to be started manually.

If you need the service to start automatically when the machine reboots,
@)} open the management console for Windows services and change the
- properties of the ChipDNA Server Service from Manual to
Automatic.

@)} The management console for Windows services can be found at Control
&Y Panel = Administrative Tools = Services.

5) Ifthe ChipDNA Server Service is not running, open the management console for
Windows services, select the ChipDNA Server Service and click ‘Start’. Or, at
the command prompt run the following command: net start
CreditcallChipDNAServer.

Configure and Run The Sample Client Applications

A sample command line interface Client is provided. The following items detail how to
configure and execute those applications.

To configure and run the sample Client CLI:

1) Make sure that the Server is configured and running as detailed in

2) Browse to C:\Payment Device SDK\ChipDNA Client CLI.

3) Using your text editor, edit client .config.xml and change the Terminal ID to the
value obtained during registration. If the Server is listening on a port or protocol
different to the default, then change the value as required.

4) Run the Client CLI using ChipDNAClient .exe.

5) The Client CLI will present a list of the available commands. Input p for “Start
Transaction” and then enter:

a) The amount in the minor value (for example: 123 for 1.23). The currency is
defined by the terminal configuration on our payment gateway.

b) The type of transaction or accept the default sale to process a Sale
transaction.

c) A unique reference (gateway Order ID) for the transaction or accept the
auto-generated value.

6) Atthe PIN pad, you must now simulate the cardholder:

your chip card may become locked just as it would in a real transaction

) Take care when entering your PIN — if you enter it incorrectly 3 times
[
attempt.

a) Insert a chip card as prompted at the PIN pad. The test transaction will start.
b) Follow the prompts on the PIN pad until the test transaction is complete.
7) Check the Client CLI to see the final status (either “Approved” or “Declined”).

Configure The Server for Production Processing

By default, the Server is configured to use the sandbox environment. This section details the
configuration changes required for production processing. When a merchant is boarded on
the payment gateway production platform they will need to generate an API Key under
Settings — Security Keys. These values should be specified in the XML configuration file.

The XML configuration file also includes details for the TMS platform which must be edited
to use the gateway’s production platform. It should be modified to contain the following:

<Servers>
<Server use="tms">
<Url>https://tms.cardeasexml.com</Url>
<Timeout>45000</Timeout>
</Servers>
<Server use="registration"s
<Url>https://live.cardeasexml.com/gw.cex</Url>
<Timeout>45000</Timeout>
</Servers>
</Serverss>

Flrewall changes may be required so the Server can communicate with several internet
services. Again, these must be changed to use the production platform instead of the
sandbox environment. Please see for more details.

Terminal Management System (TMS)

The Server regularly contacts TMS in order to download additional configuration data,
including EMV transaction settings, such as: TDOL, DDOL, Floor Limits, and Certificate
Authority Public Keys. The TMS also provides application configuration data, such as
timeouts and external connectivity options. The TMS can also provide firmware upgrades for
PIN pads as required by certification, processors and schemes.

The Server automatically connects to the Terminal Management System at regular time
intervals, for example every 24 hours (this process does not affect processing transactions).
If after a TMS update a configuration update of the PIN pads is required the Server must
interrupt processing transactions to allow the PIN pad update to happen. This will only
happen during a specified time slot which is also configurable in TMS. The default value for
this is 3am.

The Server stores the configuration data downloaded from TMS on the local disk.

7. Messaging System

The following sections discuss the messaging between the Client Helper and the POS
application. In a transaction, the POS software initiates a transaction with the Client Helper
and it updates the POS software on the progress of the transaction:

Standard transaction — In a standard Chip transaction, the POS software initiates a
transaction with the Client Helper and it updates the POS software on the progress of
the transaction.

Auto-confirm transaction — In an auto-confirm transaction, the POS software
initiates a transaction with the Client Helper and it updates the POS software on the
progress of the transaction. The installation will Confirm or Void the transaction and, if
required, request signature verification before sending the TransactionFinished event.
Errors can occur which require the POS to Confirm or Void

After calling the StartTransaction () method, the Client application may listen for the
following events:

TransactionUpdate — Fired throughout the transaction to update the POS
software on the progress of the transaction.

CardNotification — Fired when there is a change in the card status such as card
provided or removed.

CardDetails — Fired when card details are available.
SignatureVerificationRequested — Fired when signature verification is
required during an auto-confirm transaction.

TransactionFinished — Fired when the transaction is completed on the PIN pad.

The installation does not perform signature verification during a transaction. If the card
verification method of signature is required for an approved transaction then this is indicated
in the TransactionFinished event. It is then up to the POS software to verify the
cardholder’s signature. If the signature is verified the transaction should be confirmed but if
signature verification fails then the transaction should be voided.

The Client application may also listen for the PaymentDeviceAvailabilityChange
event which is fired when a PIN pad is connected or disconnected. The Client application
may receive this event at any time, not only when a transaction is in progress.

The following sections describe the messaging process for each of these flows in greater
detail.

For complete details on all of the methods and properties of the Client Helper, see reference
file C:\Payment Device SDK\ChipDNA API Documentation\ChipDNA
Framework.chm.

Standard Transaction Messaging

StartTransaction()

® TransactionUpdate event

00
Client

Payment Device SDK

TransactionUpdate event Framework

Application

TransactionFinished event

ConfirmTransaction() or Void Transaction() PY

The standard transaction messaging process follows these steps:

1)

2)

3)

4)

5)

The Client application calls StartTransaction () (see) with the
amount of the transaction and a unique reference which identifies the transaction to
the Client application. It should also specify the type of transaction; Sale
(Authorization) or Refund.

As the customer progresses through the transaction, the Client Helper sends
TransactionUpdate events (see) describing the progress of
the transaction, including EMV commands and data communication.
CardNotification and CardDetails events will be fired during a transaction
when the data they provide is available.

When the customer has completed the transaction, the Client Helper sends the
TransactionFinished event (see)-

a) If the transaction was successful, the TransactionFinished event contains
the transaction information required to print a receipt and, if approved, whether
signature verification is required.

b) If the transaction was not successful, the TransactionFinished event
contains error information.

In order to be funded for an approved transaction, the Client application calls the

ConfirmTransaction () method (see). If signature
verification or goods issue fails for an approved transaction then the Client application
calls the VoidTransaction () method (see). Declined or

terminated transactions do not require the Client to call Conf irmTransaction () or
VoidTransaction (). If a transaction was approved online but the final transaction
result is declined or terminated then the Server will handle the void automatically
before returning the result to the Client.

After authorization you must CONFIRM - otherwise the transaction

@ will not be settled and the merchant will not receive funds.

The Server may decline a transaction after an authorization and
attempt to send a reversal automatically. If this fails for any
reason, a VoidRequestFailed error is sent in the

TransactionFinished event. The integration must VOID this
transaction.

Auto-confirm Transaction Messaging

StartTransaction()

TransactionUpdate event

. @ .
Client oo Payment Device SDK
Application Framework
Py TransactionUpdate event
® TransactionFinished event

The auto-confirm transaction messaging process follows these steps:

1)

2)

3)
4)

S)

The Client application calls StartTransaction () (see) with the
amount of the transaction, a unique reference which identifies the transaction to the
Client application and auto-confirm set to true. It should also specify the type of
transaction; Sale (Authorization) or Refund.

As the customer progresses through the transaction, the Client Helper sends
TransactionUpdate events (see) describing the progress of
the transaction, including EMV commands and data communication.
CardNotification and CardDetails events will be fired during a transaction
when the data they provide is available.

SignatureVerificationRequested event may be fired during the transaction,

before the TransactionFinished event (see)
When the customer has completed the transaction, the Client Helper sends the
TransactionFinished event (see).

a) If the transaction was successful, the TransactionFinished event contains
the transaction information required to print a receipt and, if approved, whether
signature verification is required.

b) If the transaction was not successful, the TransactionFinished event
contains error information.

If the Server fails to confirm a transaction for any reason, a
ConfirmRequestFailed error is sent in the
TransactionFinished event. The integration must CONFIRM
this transaction otherwise the transaction will not be settled and
the merchant will not receive funds. This transaction can be
VOIDED if required.

VoidRequestFailed error is sent in the TransactionFinished

@ If the Server fails to void a transaction for any reason, a
event. The integration must VOID this transaction.

8. Payment Methods
Initialization

Your application interacts with the Server using a ClientHelper object instance. If multiple
Client applications are running on a POS Server, each Client application must initialize its
own instance of ClientHelper. Before beginning the messaging process, you must
initialize a new ClientHelper instance using the ClientHelper constructor.

ipublic ClientHelper (.
string serverAddress, int serverPort, string serverSslHostName, '
 string apiKey ;
)

This method takes the following parameters:

Parameter Description/Value

apiKey The API Key value you created after logging into your
gateway account under Settings — Security Keys.

serverAddress String. The IP address or hostname of the Server.

serverPort Integer. The port number of the Server.

This method returns a ClientHelper object instance that you will use to interact with the
Server.

ConnectAndConfigure

Call connectAndConfigure () to connect to the PINpad and configure the Server to be
ready for transactions.

r public Response ConnectAndConfigure (:
List<Parameters> parameters

ConnectAndConfigure () does not take any parameters. If Response does not contain
errors, the Server will send updates via the ConnectAndConfigure event and will fire a
ConfigurationUpdate event once the process is complete.

ConnectAndConfigure () returns a Response object instance containing a parameter list
with the following name-value pairs:

Parameter Description/Value Presence

ERRORS Error codes in comma separated values format. On error

Start Transaction

Call startTransaction to initiate a transaction using the Server:

r public Response StartTransaction (
List<Parameters> parameters

This can be used to start a sale, refund or account verification transaction.

StartTransaction () takes the following parameter name-value pairs:

Name Description/Value Presence

AMOUNT String. Value of the transaction in the For sale and
minor units of the currency used (e.g., Refund
pence or cents). For example, submit transactions
123 for 1.23. The currency is defined only
by the terminal configuration on our
payment gateway.

AMOUNT_TYPE Actual or Estimate. Anamount Always
specified as Actual will not be
expected to change between Auth and
Confirm (Capture).

REFERENCE Printable ASCII characters excluding Always
the following characters “<> | : *2/\.
Maximum length of 50 characters and
may not contain leading or trailing
spaces. This is used as a transaction
identifier for the Client application and
must be a value unique to the
transaction. It is also stored as an
‘Order ID’ in the payment gateway
reporting system.

BATCH REFERENCE Printable ASCII characters with a As needed
maximum length of 50 characters and
may not contain leading or trailing
spaces. This can be used to group
transactions together.

TRANSACTION TYPE Sale or Refund. Always
A Sale transaction functions like an
‘Authorization’ in the gateway system.
It must be confirmed (captured) to
settle.

PAN KEY ENTRY Requests a PAN key entry transaction ~ As needed
is started. The card details are keyed
into the PIN pad and should only be
used for a Card Not Present
transaction. This value should be set
to True or False.

Name

CARDHOLDER_ADDRESS

CARDHOLDER_ZIPCODE

TIPPING SUPPORT

CUSTOMER_VAULT_ COMMAND

CUSTOMER_VAULT ID

MERCHANT DEFINED FIELD O1
MERCHANT DEFINED FIELD 02

MERCHANT DEFINED FIELD 19
MERCHANT DEFINED FIELD 20

BILLING ADDRESS 1
BILLING ADDRESS 2
BILLING CITY

BILLING STATE

BILLING POSTAL CODE
BILLING ZIP CODE
BILLING COUNTRY
BILLING EMAIL ADDRESS
BILLING PHONE NUMBER

PO _NUMBER

TAX AMOUNT

AUTO CONFIRM

Description/Value

Unicode characters excluding ASCII
control characters. Maximum length of
330 characters and may not contain
leading or trailing spaces. This is used
to provide the cardholder address for
PAN key entry transactions.

Unicode characters excluding ASCI|I
control characters. Maximum length of
16 characters and may not contain
leading or trailing spaces. This is used
to provide the cardholder’s ZIP code
for PAN key entry transactions.

Default, None, OnDevice
EndOfDay or Both may be used to
enable or disable the tipping method
for a sale transaction. If not present or
Default the configuration from TMS will
be used. OnDevice, EndOfDay or
Both may only be used if these
tipping methods are enabled in TMS.

add-customer

Up to 36 character string, ex:
12345ABCDE

Up to 255 characters

Up to 255 characters

Printable ASCII characters excluding
the following characters “<>|:*2/\.
Maximum length of 50 characters and
may not contain leading or trailing
spaces

See AMOUNT

True Or False..

Presence

As needed for
PAN key entry
transactions
only

As needed for
PAN key entry
transactions
only

As needed for
Sale
transactions
only
(excluding
PAN key
entry)

As needed.

As needed for
Customer
Vault
Commands
only

As needed

As needed

As needed

As needed

As needed

Name Description/Value Presence

CREDENTIAL ON FILE FIRST S True Of False. As needed for
TORE Sale
transactions
only
CREDENTIAL ON FILE REASON Unscheduled, Installment, As needed for
Incremental, Resubmission, Sale
DelayedCharge, ReAuth or transactions
NoShow should be used to indicate when
the reason for a credential on file first CREDENTIAL
store transaction _ON_FILE F
IRST STORE
is True

As mentioned previously the REFERENCE parameter is used as a
transaction identifier for the Client application. It is used locally by the

0 Server to find the transaction when performing a confirm, void or linked

refund operation. It is also used in gateway reporting as the unique
Platform ID value which can be used to look up the transactions.
Therefore, the value supplied must be unique to each transaction.

StartTransaction () returns a Response object instance containing a parameter list
with the following name-value pairs:

Name Description/Value Presence

ERRORS Error codes in comma separated values format. On error

Confirm Transaction

To finalize a transaction after it has been approved so that the transaction will be settled,
you must call ConfirmTransaction (). If the data in the event
indicated that a signature was required, calling ConfirmTransaction () is also a
confirmation that the signature passed verification.

You do not have to call ConfirmTransaction () immediately after the transaction has
been approved. For example, you may want to authorize multiple cards for a single
purchase, in which case you would call ConfirmTransaction () for each approval after
all transactions have been authorized.

r public Response ConfirmTransaction (
List<Parameters> parameters

ConfirmTransaction () takes the following parameter name-value pairs:

Name Description/Value Presence

REFERENCE The reference of the transaction to confirm. Always
Printable ASCII characters excluding the following
characters “<>| : *?/\. Maximum length of 50
characters and may not contain leading or trailing
spaces. This should be the reference provided by
the TransactionFinished event.

AMOUNT String value of the amount in the minor units of the As needed
currency used (e.g., pence or cents) if different
from authorized amount. For example, submit 123
for 1.23. The currency is defined by the terminal
configuration on our payment gateway.

ConfirmTransaction () returns a Response object instance containing a parameter list
with the following name-value pairs:

Name Description/Value Presence
TRANSACTION RESULT Either Approved or Declined Always
ERRORS Error codes in comma separated On Declined

values format.

RECEIPT DATA Elements required for receipting in XML On Approved
format.
If the transaction result is declined, it is the responsibility of the integrating application to
retry until it is approved.

Void Transaction

To void a transaction before settlement, but after it has been approved or confirmed so that
funding does not take place, call voidTransaction (). If the data in the
TransactionFinished event indicates that signature was required, and the signature
verification fails then VoidTransaction () must be called.

public Response VoidTransaction (
List<Parameters> parameters

VoidTransaction () takes the following parameter name-value pairs:

Name Description/Value Presence

REFERENCE The reference of the transaction to void. Always
Printable ASCII characters excluding the
following characters “<>| : *2/\. Maximum
length of 50 characters and may not contain
leading or trailing spaces. This should be the
reference provided by the
TransactionFinished event.

Name Description/Value Presence

VOID_REASON Value must be one of predefined Void Reasons. As needed
Currently supported values:
SignatureDeclined
TransactionFailure
PrintFailure
FulfillmentFailure
StorageFailure

VoidTransaction () returns a Response object instance containing a parameter list with
the following name-value pairs:

Name Description/Value Presence
TRANSACTION RESULT Either Approved or Declined Always
ERRORS Error codes in comma separated On Declined

values format.

RECEIPT DATA Elements required for receipting in On Approved
XML format.
If the transaction result is declined, it is the responsibility of the integrating application to
retry until it is approved.

Continue Signature Verification

ContinueSignatureVerification () must be sent after a
SignatureVerificationRequested eventin order to verify the signature and finish the
transaction. The Server will finalize the transaction and send the transactionFinished
event after receiving this command. This command and its associated event are only used
during auto-confirm transactions.

' public Response ContinueSignatureVerification(
: List<Parameters> parameters

ContinueSignatureVerification () takes the following parameter name-value pairs:

Name Description/Value Presence
SIGNATURE VERIFICATION True Of False Always
RESULT

ContinueSignatureVerification() returns a Response object instance containing a
parameter list with the following name-value pairs:

Name Description/Value Presence

ERRORS Error codes in comma separated values format. On error

Linked Refund Transaction

The Client can call LinkedRefundTransaction () to refund all or part of a previously
approved and confirmed transaction.

public Response LinkedRefundTransaction (
List<Parameters> parameters

LinkedRefundTransaction () takes the following parameter name-value pairs:

Name Description/Value Presence

AMOUNT String value of the transaction in the minor Always
units of the currency used (e.g., pence or
cents). For example, submit 123 for 1.23.
The currency is defined by the terminal
configuration on our payment gateway.

REFERENCE Printable ASCII characters excluding the Always
following characters “<>| : *?/\. Maximum
length of 50 characters and may not contain
leading or trailing spaces. This is used as a
transaction identifier for the Client application
and must be a value unique to the
transaction.

SALE_REFERENCE The reference of the transaction to refund. Always
Printable ASCII characters excluding the
following characters “<>| : *2/\. Maximum
length of 50 characters and may not contain
leading or trailing spaces. This should be the
reference provided by the
TransactionFinished event.

SALE DATE TIME The date and time of the original transaction. As needed
This is in the format yyyyMMddHHmms s but
only matches what is specified for example
yyyyMMdd, yyyyMMddHH etc. A minimum of
the date yyyyMMdd must be specified.
Although an optional parameter supplying
this improves the performance of the retrieval
of the original sale transaction.

LinkedRefundTransaction () returns a Response object instance containing a
parameter list with the following name-value pairs:

Name Description/Value Presence

TRANSACTION RESULT Either Approved or Declined On completed
transaction,
except when
terminated

RECEIPT DATA Elements required for receiptingin ~ On completed
XML format. transaction,
except when
terminated

TRANSACTION ID Numeric Gateway transaction ID. On completed
transaction,
except when
terminated

ERRORS Error codes in comma separated On Declined or
values format. termination

Terminate Transaction

To cancel a transaction in progress, call TerminateTransaction (). If the transaction has
finished before TerminateTransaction () is called and the result is Approved then
VoidTransaction () can be used to cancel the transaction.

' public Response TerminateTransaction (
List<Parameters> parameters

TerminateTransaction () takes the following parameter name-value pairs:

Name Description/Value Presence
TERMINATE DISPLAY Text to display on PIN pad screen. As needed
MESSAGE [EOL] should be used to indicate line

breaks in the display message.
TERMINATE REASON Value must be one of predefined As needed
Terminate Reasons

Currently supported values:
EPOSTerminated

TerminateTransaction () returns a Response object instance containing a parameter
list with the following name-value pairs:

Name Description/Value Presence

ERRORS Error codes in comma separated values format. On error

Set Idle Message

Call setIdleMessage () to set the message display on PIN pad screens when they are in
idle state.

g
[

r public Response SetIdleMessage (
: List<Parameters> parameters !

SetIdleMessage () takes the following parameter name-value pairs:

Name Description/Value Presence

IDLE_MESSAGE Text to display on PIN pad screen. [EOL] Always
should be used to indicate line breaks in the

display message.
SetIdleMessage () returns a Response object instance containing a parameter list with
the following name-value pairs:

Name Description/Value Presence

ERRORS Error codes in comma separated values format. On error

Most devices display an additional idle message which is configured via
«y TMS.

9. Payment Events
Connect and Configure

The Client Helper fires the connectAndConfigure event after connectAndConfigure
is called and once the configuration process is complete.

The EventParameters contains a parameter list with the following name-value pairs:

Name Description/Value Presence
CONNECT AND Will be one of the predefined values: Always
CONFIGURE RESULT Success

Failure
ERRORS Comma separated list of error codes. On error

Configuration Update

The Client Helper fires the configurationUpdate event after connectAndConfigure
is called and provides updates on the current state of the process.

'U
c
o
}_l
'_l
Q
o
<
10)
5
ot
=
P
10)
5
ot
s
Q
5
Q.
}_l
o)
K
A
£
<
10)
5
=4
g
@
=
I
3
10
&
o)
K
0
Y,
Q
O
5
Hh
'_l
\Q
c
=
Iy
et
'_l
O
5
[
e}
Q.
@
ot
10)
£
<
I0)
5
=4

The EventParameters contains a parameter list with the following name-value pairs:

Name Description/Value Presence
CONFIGURATION UP Will be one of the predefined values: Always
DATE ConnectAndConfigureStarted

Registering

Transaction Update

The Client Helper fires TransactionUpdate events as the customer progresses through
the transaction. Each transaction update event describes the action that triggered the event,
including EMV commands and data communication. The POS application can react to each
event as needed, such as to update a display.

The EventParameters contains a parameter list with the following name-value pairs:

Name Description/Value Presence

UPDATE Will be one of the predefined values: Always
Unknown
ApplicationSelectionStarted
AmountConfirmationStarted
CardRequested
CardRemovalRequested
MagstripeAccountSelectionStarted
OnlineAuthRequested
OnlineAuthCompleted
PanKeyEntryStarted
PanKeyEntryCompleted
PinEntryStarted
TippingRequested
TransactionStarted
VoiceReferralCompleted
ZipCodeRequested

PAYMENT DEVICE The model of the PIN pad raising the event. Always

MODEL
PAYMENT DEVICE The identifier of the PIN pad raising the Always
IDENTIFIER event.

Card Notification

When startTransaction () has been successfully called, the Client Helper fires
CardNotification events about card availability.

o
c
o
}_l
'_l.
0
o
<
10
5
=t
=
<
10}
5
=t
s
m
5
Q
}_I
I0)
R
N
=
<
10)
5
=4
o
o
R
]
3
o
o
l0)
[»]
0
Vv
Q
j8)}
[n]
Q,
Z
(e}
o
'_l.
o
'_l.
Q
m
ot
'_l.
O
5
=
<
10)
5
=4

The EventParameters contains a parameter list with the following name-value pairs:

Name Description/Value Presence
NOTIFICATION Will be one of the predefined values: Always
Inserted
Tapped
Swiped
Removed
PAYMENT DEVICE The model of the PIN pad raising the Always
MODEL event.
PAYMENT DEVICE The identifier of the PIN pad raising the Always
IDENTIFIER event.

Card Details

When StartTransaction () has been successfully called, the Client Helper fires
CardDetails events when the details are available. When GetCardDetails () has been

successfully called, the Client Helper fires a CardDetails event when the process is
finished (instead of a TransactionFinished event).

r public event EventHandler <EventParameters> CardDetailsEvent

The EventParameters contains a parameter list with the following name-value pairs:

Name Description/Value Presence
TRACK2 CLEAR TEXT Full Track 2 Data where end-to-end As needed
encryption is enabled and the card is
allowlisted.
TRACK2 MASKED Track 2 Data masked except for first 6 As needed

and last 4 digits of PAN, expiry date
and service code.

PAN CLEAR TEXT Full PAN where end-to-end encryption ~ As needed
is not enabled. This has a maximum
length of 19 digits.

PAN MASKED PAN masked except for first 6 and last As needed
4 digits.
EXPIRY DATE The expiry date of the card in the As needed

format YymMm.

CARD HASH Collection of card hashes available in ~ As needed
COLLECTION XML format. Each hash is a unique

reference that can be used to identify

a card without using the PAN. The

source of each hash indicates where it

was generated for example the

payment gateway or the PIN pad.

Signature Verification Requested

During an auto-confirm transaction, the Client Helper will fire this event before sending the
TransactionFinished event if signature verification is required.

public event EventHandler <EventParameterss
SignatureVerificationRequestedEvent

The EventParameters contains a parameter list with the following name-value pairs. The
transaction will be Approved or Declined and a receipt can be issued.

Name Description/Value Presence
TRANSACTION RESULT Approved Or Declined. On completion post
CardDetails
event
RECEIPT DATA Elements required for receipting On completion post
in XML format. CardDetails

event

When this event is received the ContinueSignatureVerification () command must
be sent in order to finish the transaction. TerminateTransaction () is also valid at this
stage and will decline the transaction as if the signature was rejected.

Transaction Finished

In any of the three messaging sequences, when StartTransaction () has been
successfully called, the Client Helper fires a TransactionFinished event when the
transaction is finished.

1 public event EventHandler<EventParameters> TransactionFinishedEvent

a parameter list with the following name-value pairs. The transaction will be Approved or
Declined and a receipt can be issued for the completed transaction. If the transaction is
finished before the CardDetails event, the Event Parameters contains only the Errors
parameter indicating the transaction has been terminated. The Errors parameter contains
a list of error codes detailing the errors that prevented the transaction from being completed.
See the enumeration in the ChipDNA Framework reference CHM file for a complete list of

error messages.

Name

TRANSACTION_ RESULT

RECEIPT DATA

REFERENCE

CARDEASE REFERENCE

CARD_ HASH

CARD_ REFERENCE

Description/Value

Approved or Declined

Elements required for receipting
in XML format.

Printable ASCII characters
excluding the following characters
“<>|:*?/\. Maximum length of
50 characters and may not
contain leading or trailing spaces.

ASCII 36 characters in the format
of a GUID. Unique transaction
generated by the payment
gateway.

Unique token generated by the
payment gateway that can be
used to identify a card without
using the PAN.

Unique reference generated by
the payment gateway that can be
used to identify a card without
using the PAN.

Presence

On completion post
CardDetails
event

On completion post
CardDetails
event

On completion post
CardDetails
event

On completion post
CardDetails
event if
authorization was
submitted online

On completion post
CardDetails
event if
authorization was
submitted online

On completion post
CardDetails
event if
authorization was
submitted online

Name

AUTH DATE_TIME

TOTAL_ AMOUNT

PAN MASKED

EXPIRY DATE

SIGNATURE
VERIFICATION
REQUIRED

SIGNATURE CAPTURED

SIGNATURE IMAGE

SIGNATURE_ IMAGE

MEDIA TYPE

CARD_HASH
COLLECTION

TRANSACTION ID

CUSTOMER _VAULT ID

CARD HOLDER FIRST

NAME

Description/Value

Date and Time for the transaction
in the format yyyyMMddHHmms s.

Total amount for the transaction in
minor units.

The obfuscated Primary Account
Number showing only the first 6
(if available) and last 4 digits.

The expiry date of the card in the
format yyYMM.

True Or False.

True Or False.

Base 64 encoded raw image
data.

The media type of the raw image
data once decoded.

Collection of card hashes
available in XML format. Each
hash is a unique reference that
can be used to identify a card
without using the PAN. The
source of each hash indicates
where it was generated, for
example the payment gateway or
the PIN pad.

Numeric Gateway transaction ID

Up to 36 character string, ex:
12345ABCDE

Card holder first name retrieved
from the card.

Presence

On completion post
CardDetails
event

On completion post
CardDetails
event

On completion post
CardDetails
event

On completion post
CardDetails
event

On completion post
CardDetails
event

On completion post
CardDetails
event

If signature was
captured on PIN
pad

If signature was
captured on PIN
pad

On completion post
CardDetails
event if
authorization was
submitted online

On completion post
CardDetails
event

As needed on
completion post
CardDetails
event

On completion post
OnlineAuthComp
leted
TransactionUpd
ate event

Name Description/Value Presence

CARD HOLDER LAST N Card holder last name retrieved On completion post

AME from the card. OnlineAuthComp
leted
TransactionUpd
ate event

ERRORS Error codes in comma separated On decline or
values format. completion pre
CardDetails
event

When a transaction using an allowlisted card is finished, the ERRORS
@) parameter includes an error code named
- AllowlistedCardPresented. In versions of ChipDNA Server prior to
3.07, this error code was named WhitelistedCardPresented.

When a transaction is completed the receipt data is returned in the parameter

RECEIPT DATA. This is returned in XML so a helper method

GetReceiptDataFromXml () is provided to extract this data into a ReceiptData object
which can be used by the integrator to generate receipts. For each receipt entry the
following is provided:

1) ID - used to identify each entry.

2) Label — recommended label that should appear on receipt.

3) Value — the value for this entry.

4) Type — either Mandatory, Optional or Debug according to guidelines regarding
receipt content. All Mandatory items must be shown on the receipt.

5) Priority — order in which items should appear on the receipt according to best
practices. The priority is a guideline only and the order may be rearranged.

10. Utility Methods
Request TMS Update

Call RequestTmsUpdate () to request the Server connects to TMS to perform an update.

r public Response RequestTmsUpdate (
List<Parameters> parameters

RequestTmsUpdate () takes the following parameter name-value pairs:

Name Description/Value Presence
TMS_REQUEST TYPE TmsConfiguration (default). As needed
UPDATE TYPE Either partial (default) or Full. As needed
CONFIGURATION UPDATE Either Immediate (default) or As needed
SCHEDULE MaintenanceTime.

RequestTmsUpdate () returns a Response object instance containing a parameter list
with the following name-value pairs:

Name Description/Value Presence

ERRORS Error codes in comma separated On error
values format.

o) It is recommended that all integrations expose the TMS update
o mechanism. This allows updated TMS properties to be downloaded
immediately without the need to wait for a scheduled update.

Get Status

Call cetstatus () to get the current status of different components of the Server in a single
call. Individual statuses can be requested by passing the parameter keys into
GetStatus (). All statuses will be returned if parameters is empty.

r public Response GetStatus(
List<Parameters> parameters

GetStatus () takes the following parameter name-value pairs:

Name Description/Value Presence
CHIPDNA STATUS CHIPDNA STATUS As needed
VERSION INFORMATION VERSION INFORMATION As needed

PAYMENT PLATFORM STATUS PAYMENT PLATFORM STATUS As needed

Name Description/Value Presence

PAYMENT DEVICE PAYMENT DEVICE_ As needed
STATUS STATUS
REQUEST QUEUE_ REQUEST QUEUE_ As needed
STATUS STATUS
TMS_STATUS TMS_STATUS As needed

GetStatus () returns a Response object instance containing a parameter list with the
following name-value pairs:

Name Description/Value Presence

ERRORS Error codes in comma separated values On error
format.

CHIPDNA STATUS The transaction processing status of the ~ On no error

Server in XML format. This contains a
flag to indicate whether a transaction is
currently being processed either True or
False and whether an issue exists that
may prevent transactions from being
processed. The latter will be one of the
predefined values:

Uninitialized

None

NoPinPadsAvailable
NoPinPadsConfigured
EncryptionCertRequired
EncryptionCertInvalid

VERSION Information obtained using On no error
INFORMATION GetVersion () in XML format.

PAYMENT PLATFORM The status of the payment gateway in On no error
STATUS XML format. This contains the machine's

local date and time, the local date and
time according to the payment platform
and whether the Server is able to
connect to the payment gateway either
Unavailable or Available.

PAYMENT DEVICE The status of each PIN pad configured On no error

STATUS with the Server for this Client in XML
format. For each PIN pad this includes
the configured Device ID and model, the
current configuration state (either
NotConfigured,
ConfigurationInProgress,
FirmwareUpdateInProgress Or
configured), whether it is processing
a transaction and if it is available along
with the availability error and information
(as described for the

Name Description/Value Presence

PaymentDeviceAvailabilityChang
e event).

For Miura devices, information about the
battery status is also included:
BatteryPercentage,
BatteryChargingStatus (one of

Not Charging

Charging

Fully Charged),
BatteryStatusUpdateDateTime,
BatteryStatusUpdateDateTimeFor
mat (currently dd/MM/yyyy
HH:mm:ss).

REQUEST QUEUE The status of the queue of requests to On no error
STATUS be sent to the payment gateway in XML

format. This includes the number of

credit, credit confirm, credit void, debit,

debit confirm and debit void requests still

to be processed.

TMS_STATUS The status of TMS configuration in XML~ On no error
format. This includes the date and time
the last update was performed and the
number of days until the next one is
required.

Get Transaction Information

Call GetTransactionInformation () to get the current information corresponding to the
specified transaction.

public Response GetTransactionInformation (
List<Parameters> parameters

GetTransactionInformation () takes the following parameter name-value pairs:

Name Description/Value Presence

REFERENCE The reference of the transaction. Always
Printable ASCII characters excluding
the following characters “<>| : *2 /\.
Maximum length of 50 characters and
may not contain leading or trailing
spaces. This should be the reference
provided by the
TransactionFinished event.

GetTransactionInformation () returns a Response object instance containing a
parameter list with the following name-value pairs:

Name

ERRORS

REFERENCE

TRANSACTION RESULT

TRANSACTION_ STATE

TRANSACTION DATE

TIME

CARDEASE_REFERENCE
_STAGE 1

CARDEASE_REFERENCE
_STAGE_2

CARD_ HASH

CARD_ REFERENCE

TRANSACTION ID

CUSTOMER _VAULT ID

Description/Value

Error codes in comma separated
values format.

The reference of the transaction.
Printable ASCII characters excluding
the following characters
“<>|:*?/\. Maximum length of 50
characters and may not contain
leading or trailing spaces.

Approved or Declined

Either Uncommitted, Committed
or Voided

The date and time of the transaction
in the format yyyyMMddHHmms s.

ASCII 36 characters in the format of
a GUID. Unique transaction
generated by the payment gateway.

ASCII 36 characters in the format of
a GUID. Unique transaction
generated by the payment gateway.

Unique token generated by the
payment gateway that can be used
to identify a card without using the
PAN.

Unique reference generated by the
payment gateway that can be used
to identify a card without using the
PAN.

Numeric Gateway transaction ID.

Up to 36 character string, ex:
12345ABCDE

Presence

On error

On no error

On no error

On no error

On no error

Present when
authorization
has been
submitted
online

Present when
confirm or void
has been
submitted
online

Present when
transaction has
been submitted
online

Present when
transaction has
been submitted
online

Always

If available

Get Version

Call cetversion () to get the version data of the Server.

GetVersion () returns a Response object instance containing a parameter list with the
following name-value pairs:

Name Description/Value Presence

CHIPDNA VERSION Build version of the Server. Always
CHIPDNA RELEASE Release name of the Server. Always
NAME
CHIPDNA APP Application name of the Server. Always
NAME

Get Merchant Data

Call GetMerchantData () to get the current information corresponding to the configured
merchant accounts. This information includes, the currencies supported, transaction types
supported and the merchant’s name and number.

GetMerchantData () returns a Response object instance containing a parameter list W|th
the following name-value pairs:

Name Description/Value Presence

ERRORS Error codes in comma separated values On error
format.

MERCHANT DATA The current merchant account information in On no error
XML format.

Run Request Queue

Call RunRequestQueue () to immediately run the request queue and optionally re-run
failed transactions after a specified date. The request queue automatically runs periodically
and processes any offline transactions that are queued for upload to the payment gateway.
However, the automatic request queue process will not upload failed transactions, whereas
runRequestQueue () will. This command can help ensure stored transactions, such as
deferred authorizations, are uploaded more quickly and reliably when the SDK is operating
in an environment with an intermittent internet connection.

The result of every request queue process, whether run automatically or via this method, is
reported back to the integrating application via RequestQueueRunCompletedEvent.

r public Response RunRequestQueue (
: List<Parameters> parameters !

RunRequestQueue () takes the following parameter name-value pairs:

Name Description/Value Presence

REQUEST QUEUE TYPE The type of request queue to run. As needed.
Values can be Pending, Failed or
PendingAndFailed. Defaults to
Pending if not sent.

RUN QUEUE FAILED The date failed transactions should be Always if
TRANSACTIONS FROM processed from. The Server will run all REQUEST
DATE failed transactions from this date until QUEUE TYPE
the present-day. is Failed
or
PendingAnd
Failed.

SDK includes this method to process these, using it may go

@ Failed transactions should be processed with caution. While the
against acquirer / processor and scheme rules.

RunRequestQueue () returns a Response object instance containing a parameter list with
the following name-value pairs:

Name Description/Value Presence

ERRORS Error codes in comma separated values format. On error

11. Utility Events
Payment Device Availability Change

The Client Helper fires a PaymentDeviceAvailabilityChange event when there is a
change in the availability of a PIN pad to process transactions. A PIN pad may not be
available to process transactions for a number of reasons, for example it has been
disconnected or the actual Device ID does not match the Device ID specified in the
configuration file. If a PIN pad is not available further information relating to the error will be
returned when possible, for example if there is a Device ID mismatch the actual Device ID

will be returned. .

g g Sy
'

i public event EventHandler <EventParameters> PaymentDeviceConnectionEvent

The EventParameters contains a parameter list with the following name-value pairs:

Name Description/Value Presence
PAYMENT DEVICE The model of the PIN pad raising the Always
MODEL event.
PAYMENT DEVICE The identifier of the PIN pad that is Always
IDENTIFIER raising the event.
IS AVAILABLE True oOr False. Always
AVAILABILITY ERROR Will be one of the predefined values: Always
None
CommsLink
DeviceIdMismatch

InvalidFirmwareVersion
DeviceNotConfigured

AVAILABILITY ERROR_ Further details relating to the Always
INFORMATION AVAILABILITY ERROR in XML
format.

Tms Update

When RequestTmsUpdate () has been successfully called, the Client Helper fires a
TmsUpdate event when the update is finished with the result of the request.

i public event EventHandler<EventParameters> TmsUpdateEvent

The EventParameters contains a parameter list with the following name-value pairs:

Name Description/Value Presence
TMS REQUEST TYPE The type of update that was requested. Always
TMS_UPDATE The result of the request is either Always
RESULT Success or Failed

ERRORS Comma separated list of error codes. If the update

failed

Request Queue Run Completed

The Client Helper fires a RequestQueueRunCompletedEvent after the request queue is

processed. Whether that is done automatically by the Server or after a call to
RunRequestQueue ().

i public event EventHandler<EventParameters> RequestQueueRunCompletedEvent

The EventParameters contains a parameter list with the following name-value pairs:

Name Description/Value Presence
REQUEST QUEUE The type of request queue run. Values can Always
TYPE be Pending, Failed or

PendingAndFailed.
REQUEST QUEUE Data collected while running the request Always
REPORT queue in XML format. This can be

deserialized via helper methods in the

Client.

ERRORS Comma separated list of error codes. If the
request
queue
encountered

an error

12. Glossary of Terms

Term
Cardholder

Chip card

CLI
EMV

EuroPay, MasterCard
and Visa

GUI

Payment Gateway

PCI DSS

PIN pad

POS

SDK

Terminal Management
System

TMS

Explanation
The customer that is trying to pay with a chip card.

‘Smart’ payment cards which include an integrated circuit microchip.
Also known as:
‘ICC’ or ‘IC card’, from Integrated Circuit.
‘Magstripe’, in reference to the magnetic strip card type
which actually pre-dates the integrated microchip type.
‘Chip and PIN’, from the brand name adopted by the
banking industries in the United Kingdom and Ireland for the
rollout of the EMV smart card payment system.
‘EMV card’, from EuroPay, MasterCard and Visa (see
below).

Command Line Interface.

See ‘EuroPay, MasterCard and Visa’.

A global standard for inter-operation of chip cards and chip card
capable PIN pads, for authenticating credit and debit card
transactions.

Graphical User Interface.

The hosted interface that provides payment processing services via
the certified integrations with processors.

Payment Card Industry Data Security Standard. An information
security standard for organizations that store, process and transmit
chip card data.

A transaction terminal device which includes a key pad for the user
to enter a Personal Identification Number (PIN) for authentication.
The SDK works with both attended and unattended PIN pads.

Point of Sale. The point at which a customer makes a payment to
the merchant.

Software Development Kit.

The hosted Terminal Management System that provides
configuration and software information to deployed installations.

See ‘Terminal Management System’.

13. Troubleshooting & Support

For assistance please send an email to your payment gateway provider with the following
information:

1) Description of the problem you’re experiencing.
2) Attach configuration and log files from your SDK installation directory:
a) Server configuration file. For example:
C:\Payment Device SDK\ChipDNA Server\chipdna.config.xml
b) Client GUI configuration file. For example:
C:\Payment Device SDK\ChipDNA Client
GUI\ChipDNAClientGUI.exe.config
c) Server log file. For example:
C:\Payment Device SDK\ChipDNA
Server\logs\ChipDNAServer.log

automatically. It is the responsibility of the integrator to periodically

@ The Server creates a daily log but does not delete any of these files
delete log files if storage is an issue.

Appendix 1. PIN pad Device ID Examples

900-011-

94
e

Figure 4 - Device ID on a VeriFone Ux300 and UxFTMA VIPA PIN pad.

QAR LR D R LD LR DR B
Model: IPP3S0 - 11T1913A

Figure 5 — Device ID on an Ingenico iPP350 RBA PIN pad.
The Device ID used in the configuration file must match the ID returned by the firmware on
the device. For the Ingenico iPP350 RBA, this is the last eight digits of the serial number
prepended with two leading zeros. 0080252787 should be used for the device in the image
above.

IPP320-11P2391A
I T |

| 2213361PT010294

Figure 6 — Device ID on an Ingenico iPP320 RBA PIN pad.

Figure 7 — Device ID on a Miura M020/M021 PIN pad.

The Device ID used in the configuration file must match the ID returned by the firmware on
the device. For the Miura PIN pads, this is the serial number with the first zero and hyphen
omitted. 17001271 should be used for the device in the image above.

Figure 9 - Device ID on an Ingenico iUC285 RAM PIN pad.

MAC Adr: S4E140F42FFD

R C A T

PN: TRD30111010A

AT T AT (R

SN: 18283731301110° 003287225
—— TR AN
Figure 10 — Device ID on an Ingenico Lane/3000 RAM PIN pad.
The Device ID used in the configuration file must match the ID returned by the firmware on
the device. For the Ingenico Lane/3000 PIN pads, this is the last nine digits of the serial
number shown in the red box with an extra zero prepended. For example for the device in
the above image the Device ID 0003287225 should be used.

L A LT
lll IIIIIII I Miiiiii-lllll

Product: Lane/5000 CL /Eth

Figure 11 — Device ID on Ingenico Lane/3000, Lane/5000, Lane/7000, Self/2000, Self/4000
and Self/5000 UPP PIN pads.

The Device ID used in the configuration file must match the ID returned by the firmware on
the device. For the Ingenico Lane UPP PIN pads, this is the last 16 digits of the serial
number shown in the pink box. 3031078003256482 should be used for the device in the
image above. The serial number can also be viewed on the device screen by pressing 0 four

times.
Made (n/Hechs an VIETNAM Rabing/Valinje: §- 10V A0S

RAM2236 VCOM/USB
AL RICIH LT LR LR S/N: 0023895621

PN:TSR303114308

UL

SN: 220617323031143923895021

The Device ID used in the configuration file must match the ID returned by the firmware on
the device. For the Ingenico Self/4000 RAM PIN pad, this is the entire number shown on the
screen or the last eight digits of the serial number printed on the underside of the device
with two zeros prepended. 0023895621 should be used for the device in the images above.

Made in: VIETNAM Rating: 9-16V=—=-2A 01

1 00O MO O OO O

PN: TSQ30311953C

LSRR TR

L SN: 221767333031195325471019

The Device ID used in the configuration file must match the ID returned by the firmware on
the device. For the Ingenico Self/2000 RAM PIN pad, this is the last eight digits of the serial
number printed on the underside of the device with two zeros prepended. 0025471019
should be used for the device in the image above.

=% Product: Self/7000

HVN: SELT0JA
== Mac Adr: 1I]1EDA3&TSE?

@: & FC CE

IP44
Made in: VIETNAM Rating: 9-16V-— 2A

PN: TSN30311949A

SN: 222437313031194926514737

The Device ID used in the configuration file must match the ID returned by the firmware on
the device. For the Ingenico Self/7000-8000 RAM device combination, this is the last eight
digits of the serial number printed on the underside of the Self/7000 unit with two zeros
prepended. 0026514737 should be used for the device in the image above.

Appendix 2. Processing of Transactions

Step 1 - Authorization

After the payment gateway sends the transaction information to the payment processor the
processor transmits the transaction amount and customer information for verification and
authorization. The processor then returns a response that indicates whether the transaction
was approved or declined. A hold is put on that amount in the cardholder’s account;
however, the amount is not transferred until the settlement process described in the next
section.

Each time the merchant performs a transaction the payment gateway authorizes the
transaction and stores the transaction information for settlement in a batch.

Merchant enters transaction Point-of-sale contacts the The host contacts card
into point-of-sale host for authorization issuer for authorization
Point-of-Sale Processor Card Issuer
Merchant receives authorization The host returns authorization response Card issuer returns authorization
response in point-of-sale to the point-of-sale and adds transaction response to the host

to batch of approved transaction

Step 2 - Settlement

In order to receive payment for the transactions submitted, the payment gateway will
perform settlement on the merchant’s behalf by sending the batch of transactions to the
processor.

Merchant initiates

settlement Point-of-sale instructs
the host to begin settlement

= -> —
=
@ E Host acknowledges
successful settlement
Point-of-Sale E Processor

The host closes the batch

Step 3 - Funding

At a predefined time, the payment processor processes the settlements the payment
gateway has sent. It creates a settlement batch for each connected financial institution and
then transmits the batch to the appropriate entity. Upon processing the settlement batch,
funds are routed to the merchant’s account for deposit.

The host generates a settlement file
for each card the merchant accepts and
transmits the file to the issuer

Issuer deposits directly to the merchant’s
designated account

Merchant Bank e Issuing Bank

Appendix 3. Supported PIN pads and
Software Versions

The Server supports a variety of different PIN pads and communication protocols for those

PIN pads.
versions.

©

Manufacturer

Ingenico
Ingenico
Ingenico
Ingenico
Ingenico
Ingenico
Ingenico
Ingenico
Ingenico
Ingenico
Ingenico
Ingenico
Ingenico
Ingenico

Ingenico

details the currently supported PIN pads and

details the software

Please contact your payment gateway provider to purchase an
approved PINpad. PINpads obtained outside of approved channels

cannot be supported.

Table 4 - Supported PIN pads.

Device

iPP320 (RBA)
iPP350 (RBA)
iUN/iSelf (RAM)
iUN/iSelf LE (RBA)
iUC285 (RBA)
iUC285 (RAM)
Lane/3000 (RAM)
Lane/3000 (UPP)
Lane/5000 (UPP)
Lane/7000 (UPP)
Self/2000 (RAM)
Self/2000 (UPP)
Self/4000 (RAM)
Self/4000 (UPP)

Self/5000 (UPP)

Region

us
us
UK/Europe
us
us
UK/Europe
UK/Europe
us
us
us
UK/Europe
us
UK/Europe
us

us

EMV Contact
(Chip)

Ready
Ready
Ready
Ready
Ready
Ready
Ready
Ready
Ready
Ready
N/A

N/A

Ready
Ready

Ready

EMV Contactless

(Chip)

Ready
Ready
Ready
Ready
Ready
Ready
Ready
Ready
Ready
Ready
Ready
Ready
Ready
Ready

Ready

EMV EZ Contact
{Magstripe)

Ready
Ready
N/A
Ready
Ready
N/A
N/A
Ready
Ready
Ready
N/A
N/A
N/A
N/A

N/A

Manufacturer

Ingenico

Miura
VeriFone

VeriFone

Device

Self/7000-8000
(RAM)

M020
Ux300 (VIPA)

UXFMTA (VIPA)

Region

UK/Europe

UK/Europe/US
UK/Europe/US

UK/Europe/US

EMV Contact
(Chip)

Ready

Ready
Ready

Ready

EMV Contactless

(Chip)

Ready

Ready
Ready

Ready

EMV EZ Contact
(Magstripe)

—
>

Ready
N/A

N/A

Table 5 - Supported software versions for PIN pads.

Manufacturer

Ingenico
Ingenico
Ingenico
Ingenico
Ingenico
Ingenico
Ingenico
Ingenico
Ingenico
Ingenico
Ingenico
Ingenico
Ingenico
Ingenico
Ingenico

Ingenico

Miura
VeriFone

VeriFone

Device

iPP320 (RBA)
iPP350 (RBA)
iUN/iSelf (RAM)
iUN/iSelf LE (RBA)
iUC285 (RBA)
iUC285 (RAM)
Lane/3000 (RAM)
Lane/3000 (UPP)
Lane/5000 (UPP)
Lane/7000 (UPP)
Self/2000 (RAM)
Self/2000 (UPP)
Self/4000 (RAM)
Self/4000 (UPP)
Self/5000 (UPP)

Self/7000-8000
(RAM)

M020
Ux300 (VIPA)

UXFMTA (VIPA)

Region

us
us
UK/Europe
us
us
UK/Europe
UK/Europe
us
us
us
UK/Europe
us
UK/Europe
us
us

UK/Europe

UK/Europe/US
UK/Europe/US

UK/Europe/US

Version

23k6 (23.52.6)
23k6 (23.52.6)
2129

23k6 (23.52.6)
23k6 (23.52.6)
2129

2022

7.82.05
7.82.05
7.82.05

2238

7.83.19

2238

7.83.15
7.83.15

2238

1-65
6.8.2.21

6.8.2.21

Appendix 4. Firewall Configuration

The Server communicates with several internet services. It must be able to communicate
with Direct Connect () and TMS (
on the payment gateway. This may require changes to your firewall configuration.

The port number the Server is hosted on is configured in the configuration XML file (see
for more details) and the default value is 1869.

The table below lists the IP addresses and port numbers for each external service used by
the Server.

Table 6 - IP addresses and port numbers for external services.

Service Platform IP addresses Ports

Direct Connect Live 91.197.92.250 443
91.197.93.250
91.197.93.251
91.197.94.250
91.197.94.252

74.120.0.250
74.120.1.250
74.120.1.251
74.120.2.250
74.120.2.252

Test 91.197.92.230 443

91.197.93.230
91.197.94.203
91.197.95.230

TMS Live 91.197.92.239 443
91.197.93.239
91.197.94.239
74.120.0.239
74.120.1.239
74.120.2.239

Test 91.197.92.219 443
91.197.93.219
91.197.94.219
91.197.95.219

https://live.cardeasexml.com/
https://tms.cardeasexml.com/

Appendix 5. Configuring client-side
Logging with the Java Client

The Java client library (ChipDnaClientLib. jar) supports logging using Log4j. This
feature is disabled by default; to enable it, call setLoggerEnabled () and ensure that
dependencies log4j-api-2.17.1.jar and log4j-core-2.17.1.jar are available in
the classpath. If you wish to confirm that logging is enabled, call isLoggerEnabled ().

By default, Log4j outputs errors to the console only. For convenience we have provided a
ready-made Log4j configuration file (c1lient.config.log47j2.xml) that will redirect
output to a file (logs/ChipDNAClient . log). To use, the config file must be available in
the application working directory before logging is enabled.

Appendix 6. Supported PIN pads and
Supported Features

The SDK supports a variety of different PIN pads and features for those PIN pads.
details the currently supported PIN pads and the features each PIN pad supports.

Manufacturer

Ingenico
Ingenico
Ingenico
Ingenico
Ingenico
Ingenico
Ingenico
Ingenico
Ingenico
Ingenico
Ingenico
Ingenico
Ingenico
Ingenico
Ingenico

Ingenico

Miura
VeriFone

VeriFone

Table 7 — Supported PIN pads and each supported feature.

Device

iPP320 (RBA)
iPP350 (RBA)
iUN/iSelf (RAM)
iUN/iSelf LE (RBA)
iUC285 (RBA)
iUC285 (RAM)
Lane/3000 (RAM)
Lane/3000 (UPP)
Lane/5000 (UPP)
Lane/7000 (UPP)
Self/2000 (RAM)
Self/2000 (UPP)
Self/4000 (RAM)
Self/4000 (UPP)
Self/5000 (UPP)

Self/7000-8000
(RAM)

M020
Ux300 (VIPA)

UxFMTA (VIPA)

Region

us
us
UK/Europe
us
us
UK/Europe
UK/Europe
us
us
us
UK/Europe
us
UK/Europe
us
us

UK/Europe

UK/Europe/US
UK/Europe/US

UK/Europe/US

Card Allowlisting

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Card Removal Enforced

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

PAN Keyed Entry

Yes

Yes

Yes

Yes

Yes

Yes

Yes

On-Device Tipping

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Voice Referral

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Partial Approval

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Deferred Authorization

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Appendix 7. Supported PIN pads and Transaction Update Event
Parameters

Some of the transaction update event parameter values apply to all PIN pads and other transaction update event parameter values apply
to particular PIN pads based upon supported features. details the currently supported PIN pads and the transaction update event
parameter values that each PIN pad supports.

Table 8 — Supported PIN pads and supported transaction update parameter values.

|
£
a - [Tl
Q el
£ £ 2
=] o
5 & 2 E s 0w 3 |
c £ " 2] 2 o o 9
2 o o [1 1] T o
- - =1 w o) = [-% - £ .-
%) n o -, g o = E 4@ 2
[T o = @ | o -1} o [[%] - -1 = u
= h = t{ [o o (o] - - = =1 [=
o g £ 2 g r £ s s g T E =
= =] -] 2 [} < = = [= [= o a a L
o = 5] 3 £ P 1 5 by b 2 o %]
n =] =1 g 7] 7]
= o [~ m £ g] = - - = = L o &
3 v] o b 5 x x = 2] "] - c L=] 3
£ s ‘S =]] © n = = x x i a [+] (]
[@) & £ 5 5 2 I T 3 & £ e B 2
= (=] e < = o o E =] =] [o [(= = X
Ingenico iPP320 (RBA) us Yes Yes Yes Yes Yes Yes Yes Yes Yes
Ingenico iPP350 (RBA) us Yes Yes Yes Yes Yes Yes Yes Yes Yes
Ingenico iUN/iSelf (RAM) UK/Europe Yes Yes Yes Yes Yes Yes Yes
Ingenico iUN/iSelf LE(RBA) US Yes Yes Yes Yes Yes Yes Yes Yes Yes
Ingenico iUC285 (RBA) us Yes Yes Yes Yes Yes Yes

Ingenico iUC285 (RAM) UK/Europe Yes Yes Yes Yes Yes

o
ol
= - E
- .
a % 2 [T - 2 -
£ c @ 2 @ ol ° 2
=] 2 2 k- & ® = o
E n T i] = £ 3 E o
= - E = E g o E A =] 3 3 "]
a [= 2 = 2 ° g o (] b3 &]
= 1] = [o o o Fl = 5 [=
= £ c 3 = b= £ £ =1 =1 2 o t =
© o 3 = 2 < s = £ £ I} @ 3
n = T E a < < u u ; x ‘3 7]
= -] c 5 c [- = = [x -4
Fl u o = s -4 -4 = s - 2 v c £]
€ > > 2 2 B B & = = e € B [= ';_
= a o < < &8 &8 = s 6 & & & E £ W
Ingenico Lane/3000 (RAM) UK/Europe Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes No
Ingenico Lane/3000 (UPP) US Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Ingenico Lane/5000 (UPP) US Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Ingenico Lane/7000 (UPP) US Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Ingenico Self/2000 (RAM) UK/Europe No No Yes No No Yes Yes No No Yes No No No
Ingenico Self/2000 (UPP) us No No Yes No No Yes Yes No No Yes No No No
Ingenico Self/4000 (RAM) UK/Europe Yes Yes Yes Yes No Yes Yes No No Yes No No No
Ingenico Self/4000 (UPP) us Yes Yes Yes Yes Yes Yes Yes No No Yes No No No
Ingenico Self/5000 (UPP) us Yes Yes Yes Yes Yes Yes Yes No No Yes No No No
Ingenico Self/7000-8000 UK/Europe Yes Yes Yes Yes No Yes Yes No No Yes No No No
(RAM)
Miura M020 UK/Europe/US Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No

pajsanbayapojdiz

pajajdwo)|eliajadad|oN

paysanbaybuiddil

pajieishiguiuid

pajajdwonAsjugiayued

paueisAnuadayued

pajadwodyinyauljuo

pajsanbayuinyauluo

paueIsuoiaasuncldyadlsben

pajsanbay|erowaypie)

peisanbaypied

PaMEISUOIIEWIUOIIUNOWY

pajpejsuciizajasuocnedlddy

uoibay

aoinaqg

Jainjoenuepy

Yes Yes Yes Yes Yes Yes No No Yes No No No

Yes

UK/Europe/US

Ux300 (VIPA)

VeriFone

Yes Yes Yes Yes Yes Yes No No Yes No No No

Yes

UK/Europe/US

UXFMTA (VIPA)

VeriFone

